A molecular module controlling silicon efflux from glandular trichomes is required for fruit bloom formation in cucumber

Yaqi Zhang, Lei Sun, Li Shan, Xi Zhao, Mingming Dong, Shuai Yin, Yuming Dong, Ting Wang, Sen Li, Lin Yang, Menghang An, Yingqi Shi, Tiantian Pei, Hongliang Zhu, Yiqun Weng, Xingwang Liu, Huazhong Ren
{"title":"A molecular module controlling silicon efflux from glandular trichomes is required for fruit bloom formation in cucumber","authors":"Yaqi Zhang, Lei Sun, Li Shan, Xi Zhao, Mingming Dong, Shuai Yin, Yuming Dong, Ting Wang, Sen Li, Lin Yang, Menghang An, Yingqi Shi, Tiantian Pei, Hongliang Zhu, Yiqun Weng, Xingwang Liu, Huazhong Ren","doi":"10.1093/plcell/koaf175","DOIUrl":null,"url":null,"abstract":"Silicon plays a vital role in plant physiology. Although the silicon transport mechanisms in monocots are well characterized, the molecular basis of silicon deposition in dicots remains elusive. Fruit bloom, an off-white substance covering the fruit surface and affecting its appearance, is crucial for the market-driven breeding and production of cucumbers (Cucumis sativus). However, the mechanisms regulating fruit bloom formation are not well understood. In this study, we aimed to elucidate the molecular mechanisms underlying silicon deposition in glandular trichomes (GTs) and GT’s role in fruit bloom formation. Using map-based cloning, we identified a single-nucleotide polymorphism in CsaV3_3G017280, encoding a homolog of the rice (Oryza sativa) silicon efflux transporter Low Silicon Rice 2 (Lsi2), causing a premature translation termination mutation linked to the non-fruit-bloom phenotype. Knocking out CsLsi2 prevented silicon deposition on the fruit surface, leading to a non-fruit-bloom phenotype. The MYB transcription factor CsRAX3 directly activated CsLsi2, and the GT development–related factor TINY BRANCHED HAIR (TBH) regulated both CsRAX3 and CsLsi2, linking silicon deposition with GT development. Collectively, our observations establish a direct connection between Si deposition and GT development and provide a perspective on the mechanisms regulating fruit bloom formation.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"671 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon plays a vital role in plant physiology. Although the silicon transport mechanisms in monocots are well characterized, the molecular basis of silicon deposition in dicots remains elusive. Fruit bloom, an off-white substance covering the fruit surface and affecting its appearance, is crucial for the market-driven breeding and production of cucumbers (Cucumis sativus). However, the mechanisms regulating fruit bloom formation are not well understood. In this study, we aimed to elucidate the molecular mechanisms underlying silicon deposition in glandular trichomes (GTs) and GT’s role in fruit bloom formation. Using map-based cloning, we identified a single-nucleotide polymorphism in CsaV3_3G017280, encoding a homolog of the rice (Oryza sativa) silicon efflux transporter Low Silicon Rice 2 (Lsi2), causing a premature translation termination mutation linked to the non-fruit-bloom phenotype. Knocking out CsLsi2 prevented silicon deposition on the fruit surface, leading to a non-fruit-bloom phenotype. The MYB transcription factor CsRAX3 directly activated CsLsi2, and the GT development–related factor TINY BRANCHED HAIR (TBH) regulated both CsRAX3 and CsLsi2, linking silicon deposition with GT development. Collectively, our observations establish a direct connection between Si deposition and GT development and provide a perspective on the mechanisms regulating fruit bloom formation.
控制硅从腺毛外排的分子模块是黄瓜果实开花形成所必需的
硅在植物生理中起着至关重要的作用。虽然硅在单晶片中的输运机制已经很好地描述了,但硅在双晶片中的沉积的分子基础仍然是难以捉摸的。果花是一种覆盖在果实表面并影响其外观的灰白色物质,对黄瓜(Cucumis sativus)的市场导向育种和生产至关重要。然而,调控果实开花形成的机制尚不清楚。在这项研究中,我们旨在阐明硅沉积在腺毛状体(GTs)中的分子机制及其在果实开花形成中的作用。利用图谱克隆技术,研究人员在CsaV3_3G017280中发现了一个单核苷酸多态性,该多态性编码水稻(Oryza sativa)硅外排转运体低硅水稻2 (Lsi2)的同源基因,导致与不开花表型相关的过早翻译终止突变。敲除CsLsi2阻止了硅在果实表面的沉积,导致了不开花的表型。MYB转录因子CsRAX3直接激活CsLsi2, GT发育相关因子TINY BRANCHED HAIR (TBH)同时调控CsRAX3和CsLsi2,将硅沉积与GT发育联系起来。总的来说,我们的观察结果建立了硅沉积与GT发育之间的直接联系,并为调控果实开花形成的机制提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信