Rational design of induced regeneration via somatic embryogenesis in the absence of exogenous phytohormones

Jana Wittmer, Menno Pijnenburg, Tristan Wijsman, Sieme Pelzer, Kelvin Adema, Merijn Kerstens, An-Nikol Kutevska, Joke Fierens, Hugo Hofhuis, Robert Sevenier, Bjorn Kloosterman, Michiel de Both, Wouter Kohlen, Harm Nijveen, Ben Scheres, Renze Heidstra
{"title":"Rational design of induced regeneration via somatic embryogenesis in the absence of exogenous phytohormones","authors":"Jana Wittmer, Menno Pijnenburg, Tristan Wijsman, Sieme Pelzer, Kelvin Adema, Merijn Kerstens, An-Nikol Kutevska, Joke Fierens, Hugo Hofhuis, Robert Sevenier, Bjorn Kloosterman, Michiel de Both, Wouter Kohlen, Harm Nijveen, Ben Scheres, Renze Heidstra","doi":"10.1093/plcell/koaf252","DOIUrl":null,"url":null,"abstract":"Plants have a remarkable regenerative capacity, but this varies widely among species and tissue types. Important crop cultivars show regenerative recalcitrance, which is a major obstacle for the application of modern plant propagation and breeding techniques. Regeneration generally involves empirically determined tissue culture methods that are based on the principle of inducing totipotency. Cells are first persuaded to change fate towards root stem cell-like identity and then are reprogrammed to acquire shoot fate. Alternatively, pluri- or totipotent cells can lead to the formation of a complete plantlet through somatic embryogenesis. We applied our knowledge of root stem cell niche biology to directly use the implicated stem cell factors, including RETINOBLASTOMA (RBR), SCARECROW (SCR), SHORT ROOT (SHR) and members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) and WUSCHEL-related homeobox (WOX) gene families, as a tool to induce regeneration in a way similar to the principle of induced pluripotent stem cells in the animal field. We show that stem cell factors synergistically induce regeneration involving the somatic embryogenesis pathway and can break recalcitrance in Arabidopsis (Arabidopsis thaliana) and pepper (Capsicum annuum).","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plants have a remarkable regenerative capacity, but this varies widely among species and tissue types. Important crop cultivars show regenerative recalcitrance, which is a major obstacle for the application of modern plant propagation and breeding techniques. Regeneration generally involves empirically determined tissue culture methods that are based on the principle of inducing totipotency. Cells are first persuaded to change fate towards root stem cell-like identity and then are reprogrammed to acquire shoot fate. Alternatively, pluri- or totipotent cells can lead to the formation of a complete plantlet through somatic embryogenesis. We applied our knowledge of root stem cell niche biology to directly use the implicated stem cell factors, including RETINOBLASTOMA (RBR), SCARECROW (SCR), SHORT ROOT (SHR) and members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) and WUSCHEL-related homeobox (WOX) gene families, as a tool to induce regeneration in a way similar to the principle of induced pluripotent stem cells in the animal field. We show that stem cell factors synergistically induce regeneration involving the somatic embryogenesis pathway and can break recalcitrance in Arabidopsis (Arabidopsis thaliana) and pepper (Capsicum annuum).
无外源植物激素诱导体细胞胚胎再生的合理设计
植物具有显著的再生能力,但这在物种和组织类型之间差异很大。重要的作物品种表现出再生抗性,这是现代植物繁殖育种技术应用的主要障碍。再生通常涉及基于诱导全能性原则的经验确定的组织培养方法。细胞首先被说服改变命运向根干细胞样的身份,然后被重新编程以获得芽的命运。另外,多能或全能细胞可以通过体细胞胚胎形成一个完整的植株。我们运用我们的根干细胞生态位生物学知识,直接使用相关的干细胞因子,包括视网膜母细胞瘤(RBR), SCARECROW (SCR), SHORT root (SHR)和AINTEGUMENTA-LIKE/ overxx (AIL/PLT)和wuschelrelated homeobox (WOX)基因家族成员,以类似于动物领域诱导多能干细胞原理的方式诱导再生。我们发现,干细胞因子通过体细胞胚胎发生途径协同诱导了拟南芥(Arabidopsis thaliana)和辣椒(Capsicum annuum)的再生,并能打破抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信