The Plant Cell最新文献

筛选
英文 中文
The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat E3 连接酶 TaGW2 介导转录因子 TaARR12 降解,促进小麦的抗旱性
The Plant Cell Pub Date : 2023-12-12 DOI: 10.1093/plcell/koad307
Shumin Li, Yifang Zhang, Yuling Liu, Peiyin Zhang, Xuemin Wang, Bin Chen, Li Ding, Yingxiong Nie, Fangfang Li, Zhenbing Ma, Zhensheng Kang, Hude Mao
{"title":"The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat","authors":"Shumin Li, Yifang Zhang, Yuling Liu, Peiyin Zhang, Xuemin Wang, Bin Chen, Li Ding, Yingxiong Nie, Fangfang Li, Zhenbing Ma, Zhensheng Kang, Hude Mao","doi":"10.1093/plcell/koad307","DOIUrl":"https://doi.org/10.1093/plcell/koad307","url":null,"abstract":"Drought stress limits crop yield, but the molecular modulators and their mechanisms underlying the trade-off between drought resistance and crop growth and development remain elusive. Here, a Grain width and weight2 (GW2)-like RING finger E3 ligase, TaGW2, was identified as a pivotal regulator of both kernel development and drought responses in wheat (Triticum aestivum). TaGW2 overexpression enhances drought resistance but leads to yield drag under full irrigation conditions. In contrast, TaGW2 knockdown or knockout attenuates drought resistance but remarkably increases kernel size and weight. Furthermore, TaGW2 directly interacts with and ubiquitinates the type-B Arabidopsis response regulator TaARR12, promoting its degradation via the 26S proteasome. Analysis of TaARR12 overexpression and knockdown lines indicated that TaARR12 represses the drought response but does not influence grain yield in wheat. Further DNA affinity purification sequencing combined with transcriptome analysis revealed that TaARR12 down-regulates stress-responsive genes, especially group-A basic leucine zipper (bZIP) genes, resulting in impaired drought resistance. Notably, TaARR12 knockdown in the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated tagw2 knockout mutant leads to significantly higher drought resistance and grain yield compared to wild-type plants. Collectively, these findings show that the TaGW2–TaARR12 regulatory module is essential for drought responses, providing a strategy for improving stress resistance in high-yield wheat varieties.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microtubule nucleating factor MACERATOR tethers AUGMIN7 to microtubules and governs phragmoplast architecture 微管成核因子MACERATOR将AUGMIN7与微管拴在一起,并控制噬菌体结构
The Plant Cell Pub Date : 2023-12-12 DOI: 10.1093/plcell/koad304
Sharol Schmidt-Marcec, Alyssa Parish, Tetyana Smertenko, Matthew Hickey, Bernard M A G Piette, Andrei Smertenko
{"title":"The microtubule nucleating factor MACERATOR tethers AUGMIN7 to microtubules and governs phragmoplast architecture","authors":"Sharol Schmidt-Marcec, Alyssa Parish, Tetyana Smertenko, Matthew Hickey, Bernard M A G Piette, Andrei Smertenko","doi":"10.1093/plcell/koad304","DOIUrl":"https://doi.org/10.1093/plcell/koad304","url":null,"abstract":"The plant cytokinetic microtubule array, called the phragmoplast, exhibits higher microtubule dynamics in its center (midzone) than at the periphery (distal zone). This behavior is known as the axial asymmetry. Despite being a major characteristic of the phragmoplast, little is known about regulators of this phenomenon. Here we address the role of microtubule nucleation in axial asymmetry by characterizing MACERATOR (MACET) proteins in Arabidopsis thaliana and Nicotiana benthamiana with a combination of genetic, biochemical, and live-cell imaging assays, using photo-convertible microtubule probes, and modeling. MACET paralogs accumulate at the shrinking microtubule ends and decrease the tubulin OFF rate. Loss of MACET4 and MACET5 function abrogates axial asymmetry by suppressing microtubule dynamicity in the midzone. MACET4 also narrows the microtubule nucleation angle at the phragmoplast leading edge and functions as a microtubule tethering factor for AUGMIN COMPLEX SUBUNIT 7 (AUG7). The macet4 macet5 double mutant shows diminished clustering of AUG7 in the phragmoplast distal zone. Knockout of AUG7 does not affect MACET4 localization, axial asymmetry, or microtubule nucleation angle, but increases phragmoplast length and slows down phragmoplast expansion. The mce4-1 mce5 aug7-1 triple knockout is not viable. Experimental data and modeling demonstrate that microtubule nucleation factors regulate phragmoplast architecture and axial asymmetry directly by generating new microtubules and indirectly by modulating the abundance of free tubulin.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two ARG ONAUTE proteins loaded with transposon-derived small RNAs are associated with the reproductive cell lineage in Arabidopsis 拟南芥中与生殖细胞系相关的两种 ARG ONAUTE 蛋白含有转座子衍生的小 RNA
The Plant Cell Pub Date : 2023-12-07 DOI: 10.1093/plcell/koad295
Gabriele Bradamante, Vu Hoang Nguyen, Marco Incarbone, Zohar Meir, Heinrich Bente, Mattia Donà, Nicole Lettner, Ortrun Mittelsten Scheid, Ruben Gutzat
{"title":"Two ARG ONAUTE proteins loaded with transposon-derived small RNAs are associated with the reproductive cell lineage in Arabidopsis","authors":"Gabriele Bradamante, Vu Hoang Nguyen, Marco Incarbone, Zohar Meir, Heinrich Bente, Mattia Donà, Nicole Lettner, Ortrun Mittelsten Scheid, Ruben Gutzat","doi":"10.1093/plcell/koad295","DOIUrl":"https://doi.org/10.1093/plcell/koad295","url":null,"abstract":"In sexually propagating organisms, genetic and epigenetic mutations are evolutionarily relevant only if they occur in the germline and are hence transmitted to the next generation. In contrast to most animals, plants are considered to lack an early segregating germline, implying that somatic cells can contribute genetic information to progeny. Here we demonstrate that two ARGONAUTE proteins, AGO5 and AGO9, mark cells associated with sexual reproduction in Arabidopsis (Arabidopsis thaliana) throughout development. Both AGOs are loaded with dynamically changing small RNA populations derived from highly methylated, pericentromeric, long transposons. Sequencing of single stem cell nuclei revealed that many of these transposons are co-expressed within an AGO5/9 expression domain in the shoot apical meristem (SAM). Co-occurrence of transposon expression and specific AGO expression in the SAM is reminiscent of germline features in animals and supports the existence of an early segregating germline in plants. Our results open the path to investigating transposon biology and epigenome dynamics at cellular resolution in the SAM stem cell niche.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138550632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid–dependent stress responses in Arabidopsis m6A读取器ECT1驱动mRNA封存以抑制拟南芥中水杨酸依赖的应激反应
The Plant Cell Pub Date : 2023-12-02 DOI: 10.1093/plcell/koad300
Keun Pyo Lee, Kaiwei Liu, Eun Yu Kim, Laura Medina-Puche, Haihong Dong, Minghui Di, Rahul Mohan Singh, Mengping Li, Shan Qi, Zhuoling Meng, Jungnam Cho, Heng Zhang, Rosa Lozano-Duran, Chanhong Kim
{"title":"The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid–dependent stress responses in Arabidopsis","authors":"Keun Pyo Lee, Kaiwei Liu, Eun Yu Kim, Laura Medina-Puche, Haihong Dong, Minghui Di, Rahul Mohan Singh, Mengping Li, Shan Qi, Zhuoling Meng, Jungnam Cho, Heng Zhang, Rosa Lozano-Duran, Chanhong Kim","doi":"10.1093/plcell/koad300","DOIUrl":"https://doi.org/10.1093/plcell/koad300","url":null,"abstract":"N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138475675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis 转录因子MdBPC2通过调节生长素的生物合成来改变苹果的生长和促进矮化
The Plant Cell Pub Date : 2023-11-29 DOI: 10.1093/plcell/koad297
Haiyan Zhao, Shuyuan Wan, Yanni Huang, Xiaoqiang Li, Tiantian Jiao, Zhijun Zhang, Baiquan Ma, Lingcheng Zhu, Fengwang Ma, Mingjun Li
{"title":"The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis","authors":"Haiyan Zhao, Shuyuan Wan, Yanni Huang, Xiaoqiang Li, Tiantian Jiao, Zhijun Zhang, Baiquan Ma, Lingcheng Zhu, Fengwang Ma, Mingjun Li","doi":"10.1093/plcell/koad297","DOIUrl":"https://doi.org/10.1093/plcell/koad297","url":null,"abstract":"Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarf rootstocks and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous IAA treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both class I and class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138455944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信