The Plant CellPub Date : 2024-10-22DOI: 10.1093/plcell/koae265
{"title":"Correction to: Nitrate in 2020: Thirty Years from Transport to Signaling Networks.","authors":"","doi":"10.1093/plcell/koae265","DOIUrl":"https://doi.org/10.1093/plcell/koae265","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-22DOI: 10.1093/plcell/koae284
Gwendolyn K Kirschner
{"title":"Building barriers: The role of MYB genes in rice root adaptation.","authors":"Gwendolyn K Kirschner","doi":"10.1093/plcell/koae284","DOIUrl":"https://doi.org/10.1093/plcell/koae284","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-22DOI: 10.1093/plcell/koae266
{"title":"Correction to: The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter.","authors":"","doi":"10.1093/plcell/koae266","DOIUrl":"https://doi.org/10.1093/plcell/koae266","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-21DOI: 10.1093/plcell/koae267
Yukihisa Goto,Yasuhiro Kadota,Malick Mbengue,Jennifer D Lewis,Hidenori Matsui,Noriko Maki,Bruno Pok Man Ngou,Jan Sklenar,Paul Derbyshire,Arisa Shibata,Yasunori Ichihashi,David S Guttman,Hirofumi Nakagami,Takamasa Suzuki,Frank L H Menke,Silke Robatzek,Darrell Desveaux,Cyril Zipfel,Ken Shirasu
{"title":"The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto.","authors":"Yukihisa Goto,Yasuhiro Kadota,Malick Mbengue,Jennifer D Lewis,Hidenori Matsui,Noriko Maki,Bruno Pok Man Ngou,Jan Sklenar,Paul Derbyshire,Arisa Shibata,Yasunori Ichihashi,David S Guttman,Hirofumi Nakagami,Takamasa Suzuki,Frank L H Menke,Silke Robatzek,Darrell Desveaux,Cyril Zipfel,Ken Shirasu","doi":"10.1093/plcell/koae267","DOIUrl":"https://doi.org/10.1093/plcell/koae267","url":null,"abstract":"Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana","authors":"Hua Li, Zhuo Chen, Wenjun Zhu, Xueting Ni, Junru Wang, Lufeng Fu, Jialin Chen, Tianpu Li, Lingxian Tang, Yingjie Yang, Fukun Zhang, Jiashui Wang, Biyan Zhou, Faxing Chen, Peitao Lü","doi":"10.1093/plcell/koae282","DOIUrl":"https://doi.org/10.1093/plcell/koae282","url":null,"abstract":"The banana (Musa spp.) peel undergoes rapid softening during ripening, leading to finger drop and a shortened shelf life. The regulatory mechanism behind this process remains to be elucidated. In this study, we confirmed the role of peel softening in banana finger drop and uncovered the underlying transcriptional regulatory network. Cell wall-related (CWR) genes were substantially upregulated in both the peel and finger drop zone during ethylene-induced ripening. Transcriptome analysis and genome-wide profiling of chromatin accessibility and transcription factor (TF) binding revealed that two key regulators of fruit ripening, Musa acuminata NAC-like, Activated by apetala3/Pistillata1 (MaNAP1) and MaMADS1, regulate CWR genes by directly binding to their promoters or by targeting other ripening-related TFs to form a hierarchical regulatory network. Notably, MaNAP1 and MaMADS1 were directly targeted by ETHYLENE INSENSITIVE3 (MaEIN3), and MaNAP1 and MaMADS1 associated with tissue-specific histone modifications, enabling them to integrate MaEIN3-mediated ethylene signaling and undergo epigenetic regulation. Overexpression of MaNAP1, MaMADS1 or other identified regulatory TFs upregulated CWR genes and promoted peel softening. Our findings unveil a MaNAP1-MaMADS1-centered regulatory cascade governing banana peel softening and finger drop, offering potential targets for enhancing banana texture and shelf life.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Sinningia (Gesneriaceae)","authors":"Xia Yang, Qi Liu, Miao-Miao Wang, Xiao-Ya Wang, Meng-Qi Han, Fang-Pu Liu, Tian-Feng Lü, Jing Liu, Yin-Zheng Wang","doi":"10.1093/plcell/koae283","DOIUrl":"https://doi.org/10.1093/plcell/koae283","url":null,"abstract":"Plants bearing double flowers have long been cultivated as ornamental plants. Hose-in-hose flowers, bearing 2-whorled corolla tubes in whorls 1 and 2, are uncommon but recur in Sinningia (Gesnerioideae, Gesneriaceae). In this study, we selected 15 hose-in-hose cultivars as materials to explore the underlying molecular and genetic mechanisms of this floral architecture. We found that they originated from different hybridization events within the Dircaea clade. Three B-class MADS-box genes were globally expressed in all floral whorls, but only GLOBOSA1 (GLO1) has accumulated a dominant mutation, i.e., the insertion of a hAT-like miniature inverted-repeat transposable element (MITE) into its promoter, that co-segregated with the hose-in-hose phenotype. In addition, all 15 hose-in-hose cultivars contained the same dominant GLO1 allele. Transient gene expression assays confirmed the role of this MITE insertion in up-regulating the promoter activity of GLO1 by providing several cis-regulatory elements. Genetic transformation in heterologous Chirita pumila (Didymocarpoideae, Gesneriaceae) verified that this dominant GLO1 allele is sufficient to confer the hose-in-hose phenotype. We further demonstrated that both the GLO1 allele and the hAT-like MITE descended from wild S. cardinalis with single flowers. This study highlights the significance of wide hybridization in frequent gains of the dominant GLO1 allele and thereafter repeated occurrence of hose-in-hose flowers in Sinningia.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-17DOI: 10.1093/plcell/koae274
Christian Damian Lorenzo
{"title":"Small but mighty: OsKANADI1 and OsYABBY5 regulate plant stature by tuning GA metabolism in rice.","authors":"Christian Damian Lorenzo","doi":"10.1093/plcell/koae274","DOIUrl":"https://doi.org/10.1093/plcell/koae274","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-10-15DOI: 10.1093/plcell/koae281
Elizabeth H J Robbins, Steven Kelly
{"title":"Widespread adaptive evolution in angiosperm photosystems provides insight into the evolution of photosystem II repair","authors":"Elizabeth H J Robbins, Steven Kelly","doi":"10.1093/plcell/koae281","DOIUrl":"https://doi.org/10.1093/plcell/koae281","url":null,"abstract":"Oxygenic photosynthesis generates the initial energy source that fuels nearly all life on Earth. At the heart of the process are the photosystems, which are pigment binding multi-protein complexes that catalyse the first step of photochemical conversion of light energy into chemical energy. Here, we investigate the molecular evolution of the plastid-encoded photosystem subunits at single-residue resolution across 773 angiosperm species. We show that despite an extremely high level of conservation, 7% of residues in the photosystems, spanning all photosystem subunits, exhibit hallmarks of adaptive evolution. Through in silico modelling of these adaptive substitutions, we uncover the impact of these changes on the predicted properties of the photosystems, focussing on their effects on co-factor binding and inter-subunit interface formation. By analyzing these cohorts of changes, we reveal that evolution has repeatedly altered the interaction between photosystem II and its D1 subunit in a manner that is predicted to reduce the energetic barrier for D1 turnover and photosystem repair. Together, these results provide insight into the trajectory of photosystem adaptation during angiosperm evolution.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}