The Plant Cell最新文献

筛选
英文 中文
BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition BIG 可增强 Arg/N-degron 通路介导的蛋白质降解,从而调控拟南芥的缺氧反应和单宁沉积
The Plant Cell Pub Date : 2024-04-12 DOI: 10.1093/plcell/koae117
Hongtao Zhang, Chelsea Rundle, Nikola Winter, Alexandra Miricescu, Brian C Mooney, Andreas Bachmair, Emmanuelle Graciet, Frederica L Theodoulou
{"title":"BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition","authors":"Hongtao Zhang, Chelsea Rundle, Nikola Winter, Alexandra Miricescu, Brian C Mooney, Andreas Bachmair, Emmanuelle Graciet, Frederica L Theodoulou","doi":"10.1093/plcell/koae117","DOIUrl":"https://doi.org/10.1093/plcell/koae117","url":null,"abstract":"BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5-MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signalling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal (Nt) residue. We crossed a big loss-of-function allele to two N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2) was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyltransferase activity and RAP-type ERFVII transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia response and broader processes in Arabidopsis.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aw, snap! How reversible protein lipidation helps plants deal with sudden temperature dives. 嗷,啪可逆蛋白脂化如何帮助植物应对温度骤降?
The Plant Cell Pub Date : 2024-04-12 DOI: 10.1093/plcell/koae118
Vicky Howe
{"title":"Aw, snap! How reversible protein lipidation helps plants deal with sudden temperature dives.","authors":"Vicky Howe","doi":"10.1093/plcell/koae118","DOIUrl":"https://doi.org/10.1093/plcell/koae118","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140710564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages NLR 免疫受体的 N 端结构域在不同植物系中表现出结构和功能上的相似性
The Plant Cell Pub Date : 2024-04-10 DOI: 10.1093/plcell/koae113
Khong-Sam Chia, Jiorgos Kourelis, Albin Teulet, Martin Vickers, Toshiyuki Sakai, Joseph F Walker, Sebastian Schornack, Sophien Kamoun, Philip Carella
{"title":"The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages","authors":"Khong-Sam Chia, Jiorgos Kourelis, Albin Teulet, Martin Vickers, Toshiyuki Sakai, Joseph F Walker, Sebastian Schornack, Sophien Kamoun, Philip Carella","doi":"10.1093/plcell/koae113","DOIUrl":"https://doi.org/10.1093/plcell/koae113","url":null,"abstract":"Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of non-flowering plants retain immune-related functions through trans-lineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to non-flowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable to motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the non-flowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent non-flowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein destroyer: Inducible E3-DART for targeted protein degradation in plants. 蛋白质破坏者用于植物蛋白质定向降解的诱导型 E3-DART
The Plant Cell Pub Date : 2024-04-10 DOI: 10.1093/plcell/koae114
N. Kamble
{"title":"Protein destroyer: Inducible E3-DART for targeted protein degradation in plants.","authors":"N. Kamble","doi":"10.1093/plcell/koae114","DOIUrl":"https://doi.org/10.1093/plcell/koae114","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140717133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging the perception: ICE1 links cold sensing and salicylic acid signaling. 连接感知:ICE1 将冷感和水杨酸信号连接起来。
The Plant Cell Pub Date : 2024-04-10 DOI: 10.1093/plcell/koae115
Leiyun Yang
{"title":"Bridging the perception: ICE1 links cold sensing and salicylic acid signaling.","authors":"Leiyun Yang","doi":"10.1093/plcell/koae115","DOIUrl":"https://doi.org/10.1093/plcell/koae115","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140720270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational activation by a synthetic PPR protein elucidates control of psbA translation in Arabidopsis chloroplasts 合成 PPR 蛋白的翻译激活阐明拟南芥叶绿体中 psbA 的翻译控制
The Plant Cell Pub Date : 2024-04-09 DOI: 10.1093/plcell/koae112
Margarita Rojas, Prakitchai Chotewutmontri, Alice Barkan
{"title":"Translational activation by a synthetic PPR protein elucidates control of psbA translation in Arabidopsis chloroplasts","authors":"Margarita Rojas, Prakitchai Chotewutmontri, Alice Barkan","doi":"10.1093/plcell/koae112","DOIUrl":"https://doi.org/10.1093/plcell/koae112","url":null,"abstract":"Translation initiation on chloroplast psbA mRNA in plants scales with light intensity, providing its gene product, D1, as needed to replace photodamaged D1 in Photosystem II. The psbA translational activator HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) has been hypothesized to mediate this regulation. HCF173 belongs to the short-chain dehydrogenase/reductase superfamily, associates with the psbA 5'-untranslated region (5'-UTR), and has been hypothesized to enhance translation by binding an RNA segment that would otherwise pair with and mask the ribosome binding region. To test these hypotheses, we examined whether a synthetic pentatricopeptide repeat (sPPR) protein can substitute for HCF173 when bound to the HCF173 binding site. We show that an sPPR designed to bind HCF173's footprint in the psbA 5'-UTR bound the intended site in vivo and partially substituted for HCF173 to activate psbA translation. However, sPPR-activated translation did not respond to light. These results imply that HCF173 activates translation, at least in part, by sequestering the RNA it binds to maintain an accessible ribosome binding region, and that HCF173 is also required to regulate psbA translation in response to light. Translational activation can be added to the functions that can be programmed with sPPR proteins for synthetic biology applications in chloroplasts.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Y locus encodes a REPRESSOR OF PHOTOSYNTHETIC GENES protein that represses carotenoid biosynthesis via interaction with APRR2 in carrot Y 基因座编码一种光合基因抑制蛋白,该蛋白通过与胡萝卜中的 APRR2 相互作用抑制类胡萝卜素的生物合成
The Plant Cell Pub Date : 2024-04-09 DOI: 10.1093/plcell/koae111
Ying-Gang Wang, Yu-Min Zhang, Ya-Hui Wang, Kai Zhang, Jing Ma, Jia-Xin Hang, Yu-Ting Su, Shan-Shan Tan, Hui Liu, Ai-Sheng Xiong, Zhi-Sheng Xu
{"title":"The Y locus encodes a REPRESSOR OF PHOTOSYNTHETIC GENES protein that represses carotenoid biosynthesis via interaction with APRR2 in carrot","authors":"Ying-Gang Wang, Yu-Min Zhang, Ya-Hui Wang, Kai Zhang, Jing Ma, Jia-Xin Hang, Yu-Ting Su, Shan-Shan Tan, Hui Liu, Ai-Sheng Xiong, Zhi-Sheng Xu","doi":"10.1093/plcell/koae111","DOIUrl":"https://doi.org/10.1093/plcell/koae111","url":null,"abstract":"Little is known about the factors regulating carotenoid biosynthesis in roots. In this study, we characterized DCAR_032551, the candidate gene of the Y locus responsible for the transition of root color from ancestral white to yellow during carrot (Daucus carota) domestication. We show that DCAR_032551 encodes a REPRESSOR OF PHOTOSYNTHETIC GENES (RPGE) protein, named DcRPGE1. DcRPGE1 from wild carrot (DcRPGE1W) is a repressor of carotenoid biosynthesis. Specifically, DcRPGE1W physically interacts with DcAPRR2, an ARABIDOPSIS PSEUDO-RESPONSE REGULATOR2 (APRR2)-like transcription factor. Through this interaction, DcRPGE1W suppresses DcAPRR2-mediated transcriptional activation of the key carotenogenic genes phytoene synthase 1 (DcPSY1), DcPSY2, and lycopene ε-cyclase (DcLCYE), which strongly decreases carotenoid biosynthesis. We also demonstrate that the DcRPGE1W–DcAPRR2 interaction prevents DcAPRR2 from binding to the RGATTY elements in the promoter regions of DcPSY1, DcPSY2, and DcLCYE. Additionally, we identified a mutation in the DcRPGE1 coding region of yellow and orange carrots that leads to the generation of alternatively spliced transcripts encoding truncated DcRPGE1 proteins unable to interact with DcAPRR2, thereby failing to suppress carotenoid biosynthesis. These findings provide insights into the transcriptional regulation of carotenoid biosynthesis and offer potential target genes for enhancing carotenoid accumulation in crop plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins 植物色素相互作用因子基因 PIF1 和 PIF4 因启动子和蛋白质的不同而功能多样化
The Plant Cell Pub Date : 2024-04-09 DOI: 10.1093/plcell/koae110
Hanim Kim, Nayoung Lee, Yeojae Kim, Giltsu Choi
{"title":"The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins","authors":"Hanim Kim, Nayoung Lee, Yeojae Kim, Giltsu Choi","doi":"10.1093/plcell/koae110","DOIUrl":"https://doi.org/10.1093/plcell/koae110","url":null,"abstract":"Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), eight PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium 拟南芥转录因子 TCP4 控制顶端雌蕊群的特征
The Plant Cell Pub Date : 2024-04-06 DOI: 10.1093/plcell/koae107
Yutao Wang, Ning Wang, Jingqiu Lan, Yige Pan, Yidan Jiang, Yongqi Wu, Xuemei Chen, Xianzhong Feng, Genji Qin
{"title":"Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium","authors":"Yutao Wang, Ning Wang, Jingqiu Lan, Yige Pan, Yidan Jiang, Yongqi Wu, Xuemei Chen, Xianzhong Feng, Genji Qin","doi":"10.1093/plcell/koae107","DOIUrl":"https://doi.org/10.1093/plcell/koae107","url":null,"abstract":"The style and stigma at the apical gynoecium are crucial for flowering plant reproduction. However, the mechanisms underlying specification of the apical gynoecium remain unclear. Here, we demonstrate that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors are critical for apical gynoecium specification in Arabidopsis (Arabidopsis thaliana). The septuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 (tcpSEP) and duodecuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 tcp24 tcp1 tcp12 tcp18 tcp16 (tcpDUO) mutants produce narrower and longer styles, while disruption of TCPs and CRABS CLAW (CRC) or NGATHAs (NGAs) in tcpDUO crc or tcpDUO nga1 nga2 nga4 causes the apical gynoecium to be replaced by lamellar structures with indeterminate growth. TCPs are predominantly expressed in the apex of the gynoecium. TCP4 interacts with CRC to synergistically up-regulate the expression level of NGAs, and NGAs further form high-order complexes to control the expression of auxin-related genes in the apical gynoecium by directly interacting with TCP4. Our findings demonstrate that TCP4 physically associates with CRC and NGAs to control auxin biosynthesis in forming fine structures of the apical gynoecium.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The AGAMOUS-LIKE 16–GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber 类似 AGAMOUS 的 16 种元素调控因子 1 模块通过脱落酸的分解来调控黄瓜腋芽的生长
The Plant Cell Pub Date : 2024-04-06 DOI: 10.1093/plcell/koae108
Jiacai Chen, Liu Liu, Guanghui Wang, Guangxin Chen, Xiaofeng Liu, Min Li, Lijie Han, Weiyuan Song, Shaoyun Wang, Chuang Li, Zhongyi Wang, Yuxiang Huang, Chaoheng Gu, Zhengan Yang, Zhaoyang Zhou, Jianyu Zhao, Xiaolan Zhang
{"title":"The AGAMOUS-LIKE 16–GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber","authors":"Jiacai Chen, Liu Liu, Guanghui Wang, Guangxin Chen, Xiaofeng Liu, Min Li, Lijie Han, Weiyuan Song, Shaoyun Wang, Chuang Li, Zhongyi Wang, Yuxiang Huang, Chaoheng Gu, Zhengan Yang, Zhaoyang Zhou, Jianyu Zhao, Xiaolan Zhang","doi":"10.1093/plcell/koae108","DOIUrl":"https://doi.org/10.1093/plcell/koae108","url":null,"abstract":"Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16–CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信