The Plant Cell最新文献

筛选
英文 中文
Correction to: Nitrate in 2020: Thirty Years from Transport to Signaling Networks. 更正:2020 年的硝酸盐:从运输到信号网络的三十年。
The Plant Cell Pub Date : 2024-10-22 DOI: 10.1093/plcell/koae265
{"title":"Correction to: Nitrate in 2020: Thirty Years from Transport to Signaling Networks.","authors":"","doi":"10.1093/plcell/koae265","DOIUrl":"https://doi.org/10.1093/plcell/koae265","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building barriers: The role of MYB genes in rice root adaptation. 建立障碍:MYB 基因在水稻根系适应性中的作用。
The Plant Cell Pub Date : 2024-10-22 DOI: 10.1093/plcell/koae284
Gwendolyn K Kirschner
{"title":"Building barriers: The role of MYB genes in rice root adaptation.","authors":"Gwendolyn K Kirschner","doi":"10.1093/plcell/koae284","DOIUrl":"https://doi.org/10.1093/plcell/koae284","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Illuminating the future: Enhanced glowing plants achieved by rewiring metabolism. 照亮未来:通过重新连接新陈代谢实现植物发光。
The Plant Cell Pub Date : 2024-10-22 DOI: 10.1093/plcell/koae286
Andrew C Willoughby
{"title":"Illuminating the future: Enhanced glowing plants achieved by rewiring metabolism.","authors":"Andrew C Willoughby","doi":"10.1093/plcell/koae286","DOIUrl":"https://doi.org/10.1093/plcell/koae286","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. 更正为植物细胞壁--动态、坚固、适应性强--是天然的变形器。
The Plant Cell Pub Date : 2024-10-22 DOI: 10.1093/plcell/koae266
{"title":"Correction to: The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter.","authors":"","doi":"10.1093/plcell/koae266","DOIUrl":"https://doi.org/10.1093/plcell/koae266","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dominant suppressor mutation sheds light on TGN sorting for exocytosis. 一种显性抑制突变揭示了 TGN 外吞分拣。
The Plant Cell Pub Date : 2024-10-22 DOI: 10.1093/plcell/koae285
Leonard Blaschek
{"title":"A dominant suppressor mutation sheds light on TGN sorting for exocytosis.","authors":"Leonard Blaschek","doi":"10.1093/plcell/koae285","DOIUrl":"https://doi.org/10.1093/plcell/koae285","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"211 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto. 富亮氨酸重复受体激酶 QSK1 可调节细菌效应物 HopF2Pto 靶向的 PRR-RBOHD 复合物。
The Plant Cell Pub Date : 2024-10-21 DOI: 10.1093/plcell/koae267
Yukihisa Goto,Yasuhiro Kadota,Malick Mbengue,Jennifer D Lewis,Hidenori Matsui,Noriko Maki,Bruno Pok Man Ngou,Jan Sklenar,Paul Derbyshire,Arisa Shibata,Yasunori Ichihashi,David S Guttman,Hirofumi Nakagami,Takamasa Suzuki,Frank L H Menke,Silke Robatzek,Darrell Desveaux,Cyril Zipfel,Ken Shirasu
{"title":"The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto.","authors":"Yukihisa Goto,Yasuhiro Kadota,Malick Mbengue,Jennifer D Lewis,Hidenori Matsui,Noriko Maki,Bruno Pok Man Ngou,Jan Sklenar,Paul Derbyshire,Arisa Shibata,Yasunori Ichihashi,David S Guttman,Hirofumi Nakagami,Takamasa Suzuki,Frank L H Menke,Silke Robatzek,Darrell Desveaux,Cyril Zipfel,Ken Shirasu","doi":"10.1093/plcell/koae267","DOIUrl":"https://doi.org/10.1093/plcell/koae267","url":null,"abstract":"Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana MaNAP1-MaMADS1 转录因子模块介导乙烯调节的香蕉果皮软化和成熟过程
The Plant Cell Pub Date : 2024-10-18 DOI: 10.1093/plcell/koae282
Hua Li, Zhuo Chen, Wenjun Zhu, Xueting Ni, Junru Wang, Lufeng Fu, Jialin Chen, Tianpu Li, Lingxian Tang, Yingjie Yang, Fukun Zhang, Jiashui Wang, Biyan Zhou, Faxing Chen, Peitao Lü
{"title":"The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana","authors":"Hua Li, Zhuo Chen, Wenjun Zhu, Xueting Ni, Junru Wang, Lufeng Fu, Jialin Chen, Tianpu Li, Lingxian Tang, Yingjie Yang, Fukun Zhang, Jiashui Wang, Biyan Zhou, Faxing Chen, Peitao Lü","doi":"10.1093/plcell/koae282","DOIUrl":"https://doi.org/10.1093/plcell/koae282","url":null,"abstract":"The banana (Musa spp.) peel undergoes rapid softening during ripening, leading to finger drop and a shortened shelf life. The regulatory mechanism behind this process remains to be elucidated. In this study, we confirmed the role of peel softening in banana finger drop and uncovered the underlying transcriptional regulatory network. Cell wall-related (CWR) genes were substantially upregulated in both the peel and finger drop zone during ethylene-induced ripening. Transcriptome analysis and genome-wide profiling of chromatin accessibility and transcription factor (TF) binding revealed that two key regulators of fruit ripening, Musa acuminata NAC-like, Activated by apetala3/Pistillata1 (MaNAP1) and MaMADS1, regulate CWR genes by directly binding to their promoters or by targeting other ripening-related TFs to form a hierarchical regulatory network. Notably, MaNAP1 and MaMADS1 were directly targeted by ETHYLENE INSENSITIVE3 (MaEIN3), and MaNAP1 and MaMADS1 associated with tissue-specific histone modifications, enabling them to integrate MaEIN3-mediated ethylene signaling and undergo epigenetic regulation. Overexpression of MaNAP1, MaMADS1 or other identified regulatory TFs upregulated CWR genes and promoted peel softening. Our findings unveil a MaNAP1-MaMADS1-centered regulatory cascade governing banana peel softening and finger drop, offering potential targets for enhancing banana texture and shelf life.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Sinningia (Gesneriaceae) 单一显性 GLOBOSA 等位基因解释了茜草(Gesneriaceae)中管中管花的重复起源
The Plant Cell Pub Date : 2024-10-18 DOI: 10.1093/plcell/koae283
Xia Yang, Qi Liu, Miao-Miao Wang, Xiao-Ya Wang, Meng-Qi Han, Fang-Pu Liu, Tian-Feng Lü, Jing Liu, Yin-Zheng Wang
{"title":"A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Sinningia (Gesneriaceae)","authors":"Xia Yang, Qi Liu, Miao-Miao Wang, Xiao-Ya Wang, Meng-Qi Han, Fang-Pu Liu, Tian-Feng Lü, Jing Liu, Yin-Zheng Wang","doi":"10.1093/plcell/koae283","DOIUrl":"https://doi.org/10.1093/plcell/koae283","url":null,"abstract":"Plants bearing double flowers have long been cultivated as ornamental plants. Hose-in-hose flowers, bearing 2-whorled corolla tubes in whorls 1 and 2, are uncommon but recur in Sinningia (Gesnerioideae, Gesneriaceae). In this study, we selected 15 hose-in-hose cultivars as materials to explore the underlying molecular and genetic mechanisms of this floral architecture. We found that they originated from different hybridization events within the Dircaea clade. Three B-class MADS-box genes were globally expressed in all floral whorls, but only GLOBOSA1 (GLO1) has accumulated a dominant mutation, i.e., the insertion of a hAT-like miniature inverted-repeat transposable element (MITE) into its promoter, that co-segregated with the hose-in-hose phenotype. In addition, all 15 hose-in-hose cultivars contained the same dominant GLO1 allele. Transient gene expression assays confirmed the role of this MITE insertion in up-regulating the promoter activity of GLO1 by providing several cis-regulatory elements. Genetic transformation in heterologous Chirita pumila (Didymocarpoideae, Gesneriaceae) verified that this dominant GLO1 allele is sufficient to confer the hose-in-hose phenotype. We further demonstrated that both the GLO1 allele and the hAT-like MITE descended from wild S. cardinalis with single flowers. This study highlights the significance of wide hybridization in frequent gains of the dominant GLO1 allele and thereafter repeated occurrence of hose-in-hose flowers in Sinningia.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small but mighty: OsKANADI1 and OsYABBY5 regulate plant stature by tuning GA metabolism in rice. 小而强大OsKANADI1 和 OsYABBY5 通过调节水稻的 GA 代谢来调节植株高矮。
The Plant Cell Pub Date : 2024-10-17 DOI: 10.1093/plcell/koae274
Christian Damian Lorenzo
{"title":"Small but mighty: OsKANADI1 and OsYABBY5 regulate plant stature by tuning GA metabolism in rice.","authors":"Christian Damian Lorenzo","doi":"10.1093/plcell/koae274","DOIUrl":"https://doi.org/10.1093/plcell/koae274","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Widespread adaptive evolution in angiosperm photosystems provides insight into the evolution of photosystem II repair 被子植物光合系统的广泛适应性进化为光合系统 II 修复的进化提供了启示
The Plant Cell Pub Date : 2024-10-15 DOI: 10.1093/plcell/koae281
Elizabeth H J Robbins, Steven Kelly
{"title":"Widespread adaptive evolution in angiosperm photosystems provides insight into the evolution of photosystem II repair","authors":"Elizabeth H J Robbins, Steven Kelly","doi":"10.1093/plcell/koae281","DOIUrl":"https://doi.org/10.1093/plcell/koae281","url":null,"abstract":"Oxygenic photosynthesis generates the initial energy source that fuels nearly all life on Earth. At the heart of the process are the photosystems, which are pigment binding multi-protein complexes that catalyse the first step of photochemical conversion of light energy into chemical energy. Here, we investigate the molecular evolution of the plastid-encoded photosystem subunits at single-residue resolution across 773 angiosperm species. We show that despite an extremely high level of conservation, 7% of residues in the photosystems, spanning all photosystem subunits, exhibit hallmarks of adaptive evolution. Through in silico modelling of these adaptive substitutions, we uncover the impact of these changes on the predicted properties of the photosystems, focussing on their effects on co-factor binding and inter-subunit interface formation. By analyzing these cohorts of changes, we reveal that evolution has repeatedly altered the interaction between photosystem II and its D1 subunit in a manner that is predicted to reduce the energetic barrier for D1 turnover and photosystem repair. Together, these results provide insight into the trajectory of photosystem adaptation during angiosperm evolution.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信