The Plant Cell最新文献

筛选
英文 中文
The H3K4 demethylase JMJ1 is required for proper timing of flowering in Brachypodium distachyon H3K4去甲基化酶JMJ1是大戟科植物适时开花的必要条件
The Plant Cell Pub Date : 2024-04-23 DOI: 10.1093/plcell/koae124
Bing Liu, Chengzhang Li, Xiang Li, Jiachen Wang, Wenhao Xie, Daniel P Woods, Weiya Li, Xiaoyu Zhu, Shuoming Yang, Aiwu Dong, Richard M Amasino
{"title":"The H3K4 demethylase JMJ1 is required for proper timing of flowering in Brachypodium distachyon","authors":"Bing Liu, Chengzhang Li, Xiang Li, Jiachen Wang, Wenhao Xie, Daniel P Woods, Weiya Li, Xiaoyu Zhu, Shuoming Yang, Aiwu Dong, Richard M Amasino","doi":"10.1093/plcell/koae124","DOIUrl":"https://doi.org/10.1093/plcell/koae124","url":null,"abstract":"Flowering is a key developmental transition in the plant life cycle. In temperate climates, flowering often occurs in response to the perception of seasonal cues such as changes in day-length and temperature. However, the mechanisms that have evolved to control the timing of flowering in temperate grasses are not fully understood. We identified a Brachypodium distachyon mutant whose flowering is delayed under inductive long-day conditions due to a mutation in the JMJ1 gene, which encodes a Jumonji domain-containing protein. JMJ1 is a histone demethylase that mainly demethylates H3K4me2 and H3K4me3 in vitro and in vivo. Analysis of the genome-wide distribution of H3K4me1, H3K4me2, and H3K4me3 in wild-type plants by chromatin immunoprecipitation and sequencing (ChIP-seq) combined with RNA sequencing (RNA-seq) revealed that H3K4m1 and H3K4me3 are positively associated with gene transcript levels, whereas H3K4me2 is negatively correlated with transcript levels. Furthermore, JMJ1 directly binds to the chromatin of the flowering regulator genes VRN1 and ID1 and affects their transcription by modifying their H3K4me2 and H3K4me3 levels. Genetic analyses indicated that JMJ1 promotes flowering by activating VRN1 expression. Our study reveals a role for JMJ1-mediated chromatin modification in the proper timing of flowering in B. distachyon.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein degradation in the auxin response 辅酶反应中的蛋白质降解
The Plant Cell Pub Date : 2024-04-23 DOI: 10.1093/plcell/koae125
Martijn de Roij, Jan Willem Borst, Dolf Weijers
{"title":"Protein degradation in the auxin response","authors":"Martijn de Roij, Jan Willem Borst, Dolf Weijers","doi":"10.1093/plcell/koae125","DOIUrl":"https://doi.org/10.1093/plcell/koae125","url":null,"abstract":"The signaling molecule auxin sits at the nexus of plant biology and coordinates essentially all growth and developmental processes in plants. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses in plant cells by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterisation of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub which relies on degradation of a family of transcriptional inhibitor proteins – the Aux/IAAs. Beyond describing the “classical” proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From the archives: On DNA maintenance - SWI/SNF chromatin remodeling complexes, DNA damage repair, and transposon excision repair mechanisms. 来自档案:DNA 维护 - SWI/SNF 染色质重塑复合体、DNA 损伤修复和转座子切除修复机制。
The Plant Cell Pub Date : 2024-04-23 DOI: 10.1093/plcell/koae127
Peng Liu
{"title":"From the archives: On DNA maintenance - SWI/SNF chromatin remodeling complexes, DNA damage repair, and transposon excision repair mechanisms.","authors":"Peng Liu","doi":"10.1093/plcell/koae127","DOIUrl":"https://doi.org/10.1093/plcell/koae127","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting and redesigning enhancers of photosynthesis genes. 解剖和重新设计光合作用基因的增强子。
The Plant Cell Pub Date : 2024-04-22 DOI: 10.1093/plcell/koae121
Peng Liu
{"title":"Dissecting and redesigning enhancers of photosynthesis genes.","authors":"Peng Liu","doi":"10.1093/plcell/koae121","DOIUrl":"https://doi.org/10.1093/plcell/koae121","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140672550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcriptome landscape of developing barley seeds 发育中大麦种子的转录组图谱
The Plant Cell Pub Date : 2024-04-18 DOI: 10.1093/plcell/koae095
Martin Kovacik, Anna Nowicka, Jana Zwyrtková, Beáta Strejčková, Isaia Vardanega, Eddi Esteban, Asher Pasha, Kateřina Kaduchová, Maryna Krautsova, Marie Červenková, Jan Šafář, Nicholas J Provart, Rüdiger Simon, Ales Pecinka
{"title":"The transcriptome landscape of developing barley seeds","authors":"Martin Kovacik, Anna Nowicka, Jana Zwyrtková, Beáta Strejčková, Isaia Vardanega, Eddi Esteban, Asher Pasha, Kateřina Kaduchová, Maryna Krautsova, Marie Červenková, Jan Šafář, Nicholas J Provart, Rüdiger Simon, Ales Pecinka","doi":"10.1093/plcell/koae095","DOIUrl":"https://doi.org/10.1093/plcell/koae095","url":null,"abstract":"Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4–32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140620117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis class A S-acyl transferases modify the pollen receptors LIP1 and PRK1 to regulate pollen tube guidance 拟南芥 A 类 S-酰基转移酶改变花粉受体 LIP1 和 PRK1 以调控花粉管导向
The Plant Cell Pub Date : 2024-04-18 DOI: 10.1093/plcell/koae109
Xiaojiao Xiang, Zhiyuan Wan, Shuzhan Zhang, Qiang-Nan Feng, Shan-Wei Li, Gui-Min Yin, Jing-Yu Zhi, Xin Liang, Ting Ma, Sha Li, Yan Zhang
{"title":"Arabidopsis class A S-acyl transferases modify the pollen receptors LIP1 and PRK1 to regulate pollen tube guidance","authors":"Xiaojiao Xiang, Zhiyuan Wan, Shuzhan Zhang, Qiang-Nan Feng, Shan-Wei Li, Gui-Min Yin, Jing-Yu Zhi, Xin Liang, Ting Ma, Sha Li, Yan Zhang","doi":"10.1093/plcell/koae109","DOIUrl":"https://doi.org/10.1093/plcell/koae109","url":null,"abstract":"Protein S-acylation catalyzed by protein S-acyl transferases (PATs) is a reversible lipid modification regulating protein targeting, stability, and interaction profiles. PATs are encoded by large gene families in plants, and many proteins including receptor-like cytoplasmic kinases (RLCKs) and receptor-like kinases (RLKs) are subject to S-acylation. However, few PATs have been assigned substrates, and few S-acylated proteins have known upstream enzymes. We report that Arabidopsis (Arabidopsis thaliana) class A PATs redundantly mediate pollen tube guidance and participate in the S-acylation of POLLEN RECEPTOR KINASE1 (PRK1) and LOST IN POLLEN TUBE GUIDANCE1 (LIP1), a critical RLK or RLCK for pollen tube guidance, respectively. PAT1, PAT2, PAT3, PAT4, and PAT8, collectively named PENTAPAT for simplicity, are enriched in pollen and show similar subcellular distribution. Functional loss of PENTAPAT reduces seed set due to male gametophytic defects. Specifically, pentapat pollen tubes are compromised in directional growth. We determine that PRK1 and LIP1 interact with PENTAPAT, and their S-acylation is reduced in pentapat pollen. The plasma membrane (PM) association of LIP1 is reduced in pentapat pollen, whereas point mutations reducing PRK1 S-acylation affect its affinity with its interacting proteins. Our results suggest a key role of S-acylation in pollen tube guidance through modulating PM receptor complexes.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140620073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The GRAS transcription factor CsTL regulates tendril formation in cucumber GRAS转录因子CsTL调控黄瓜卷须的形成
The Plant Cell Pub Date : 2024-04-17 DOI: 10.1093/plcell/koae123
Junjun Shen, Yanxin Jiang, Jian Pan, Linhan Sun, Qingqing Li, Wenjing He, Piaoyun Sun, Bosi Zhao, Hongjiao Zhao, Xubo Ke, Yalu Guo, Tongwen Yang, Zheng Li
{"title":"The GRAS transcription factor CsTL regulates tendril formation in cucumber","authors":"Junjun Shen, Yanxin Jiang, Jian Pan, Linhan Sun, Qingqing Li, Wenjing He, Piaoyun Sun, Bosi Zhao, Hongjiao Zhao, Xubo Ke, Yalu Guo, Tongwen Yang, Zheng Li","doi":"10.1093/plcell/koae123","DOIUrl":"https://doi.org/10.1093/plcell/koae123","url":null,"abstract":"Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140607853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Keep it cool: Unveiling the involvement of maize HEAT SHOCK FACTORS and CELLULOSE SYNTHASES in heat stress regulation. 保持凉爽揭示玉米热休克因子和细胞糖合成在热胁迫调节中的参与。
The Plant Cell Pub Date : 2024-04-17 DOI: 10.1093/plcell/koae122
N. Kamble
{"title":"Keep it cool: Unveiling the involvement of maize HEAT SHOCK FACTORS and CELLULOSE SYNTHASES in heat stress regulation.","authors":"N. Kamble","doi":"10.1093/plcell/koae122","DOIUrl":"https://doi.org/10.1093/plcell/koae122","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140694312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The chill coalition: A key regulatory node connecting salicylic acid and brassinosteroids in freezing tolerance. 寒冷联盟:连接水杨酸和黄铜类固醇在耐寒性中的关键调节节点
The Plant Cell Pub Date : 2024-04-16 DOI: 10.1093/plcell/koae116
R. Sanchez-Muñoz
{"title":"The chill coalition: A key regulatory node connecting salicylic acid and brassinosteroids in freezing tolerance.","authors":"R. Sanchez-Muñoz","doi":"10.1093/plcell/koae116","DOIUrl":"https://doi.org/10.1093/plcell/koae116","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140696326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Playing the field: The molecular basis of fruit morphology-based bet-hedging. 赛场:基于果实形态的对赌的分子基础。
The Plant Cell Pub Date : 2024-04-15 DOI: 10.1093/plcell/koae119
Leonard Blaschek
{"title":"Playing the field: The molecular basis of fruit morphology-based bet-hedging.","authors":"Leonard Blaschek","doi":"10.1093/plcell/koae119","DOIUrl":"https://doi.org/10.1093/plcell/koae119","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140699343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信