The Plant CellPub Date : 2025-01-10DOI: 10.1093/plcell/koaf011
Chunhao Liu, An Li, Zhonglong Guo, Ningcong Chen, Yin Wang, Wenxiong Tang, Yuexin Wu, Jingyi Liu, Zihao Wang, Lei Li, Xin-Qiang He
{"title":"MicroRNA analysis reveals two modules that antagonistically regulate xylem tracheary element development in Arabidopsis","authors":"Chunhao Liu, An Li, Zhonglong Guo, Ningcong Chen, Yin Wang, Wenxiong Tang, Yuexin Wu, Jingyi Liu, Zihao Wang, Lei Li, Xin-Qiang He","doi":"10.1093/plcell/koaf011","DOIUrl":"https://doi.org/10.1093/plcell/koaf011","url":null,"abstract":"Tracheary elements (TEs) are vital in the transport of various substances and contribute to plant growth. The differentiation of TEs is complex and regulated by a variety of microRNAs (miRNAs). However, the dynamic changes in miRNAs during each stage of TE differentiation remain unclear, and the miRNA regulatory network is not yet complete. This study employed Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) to profile the miRNome during TE differentiation in Arabidopsis (Arabidopsis thaliana) and established comprehensive miRNA co-expression networks functioning at the different stages of TE differentiation. Two negatively correlated modules exist in the miRNA networks, each exhibiting strong intra-module positive correlation and strong inter-module negative correlation. Thus, the two modules may play opposite roles in TE differentiation and vascular development. Indeed, we found that miR408 promotes cambium formation and TE differentiation, consistent with miR408 as a key node in the networks of fate determination and the initiation of TE differentiation. Additionally, we found that miR163 inhibits secondary cell wall formation and TE differentiation, corresponding to miR163 as a key node in the TE maturation network. Moreover, we discovered that the miRNA co-expression network in poplar (Populus tomentosa) xylem development is also composed of two negatively correlated modules that contain miRNAs orthologous to those in Arabidopsis. Therefore, the two negatively correlated modules of the miRNA co-expression network are likely conserved and fundamental to xylem TE differentiation. These results provide insights into microRNA regulation in plant development.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2025-01-10DOI: 10.1093/plcell/koaf013
Sai Wang, Siqi Ge, Xianfeng Liu, Lina Cheng, Ruizhen Li, Yang Liu, Yue Cai, Sida Meng, Changhua Tan, Cai-Zhong Jiang, Mingfang Qi, Tianlai Li, Tao Xu
{"title":"A regulatory network involving calmodulin controls phytosulfokine peptide processing during drought-induced flower abscission","authors":"Sai Wang, Siqi Ge, Xianfeng Liu, Lina Cheng, Ruizhen Li, Yang Liu, Yue Cai, Sida Meng, Changhua Tan, Cai-Zhong Jiang, Mingfang Qi, Tianlai Li, Tao Xu","doi":"10.1093/plcell/koaf013","DOIUrl":"https://doi.org/10.1093/plcell/koaf013","url":null,"abstract":"Drought stress substantially decreases crop yields by causing flowers and fruits to detach prematurely. However, the molecular mechanisms modulating organ abscission under drought stress remain unclear. Here, we show that expression of CALMODULIN2 (CaM2) is specifically and sharply increased in the pedicel abscission zone (AZ) in response to drought and plays a positive role in drought-induced flower drop in tomato (Solanum lycopersicum). Due to partial functional redundancy with SlCaM6, we generated the Slcam2 Slcam6 double mutant, which showed minimal flower drop under drought. SlCaM2 and SlCaM6 interacted with the transcription factor Signal responsive 3L (SlSR3L), with the three proteins operating in the same pathway, based on genetic data. We identified Protease inhibitor26 (SlPI26) as a target gene of SlSR3L by DNA affinity purification sequencing (DAP-Seq) and transcriptome analysis. SlPI26 specifically inhibited the activity of the phytaspase SlPhyt2, hence preventing the generation of active phytosulfokine peptide and negatively regulating drought-induced flower drop. SlCaM2 and SlCaM6 enhanced the repression of SlPI26 expression by SlSR3L, promoting drought-induced flower drop. In addition, the Non-phototropic hypocotyl3 (SlNPH3)–Cullin3 (SlCUL3) complex, which relies on auxin, interacted with SlSR3L to induce its degradation. However, under drought conditions, SlNPH3–SlCUL3 function is compromised due to lower auxin concentration. These results uncover a regulatory network that precisely controls floral drop in response to drought stress.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2025-01-08DOI: 10.1093/plcell/koaf005
Peng Zhang, Robert Sharwood, Adam Carroll, Gonzalo M Estavillo, Susanne von Caemmerer, Robert T Furbank
{"title":"Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis","authors":"Peng Zhang, Robert Sharwood, Adam Carroll, Gonzalo M Estavillo, Susanne von Caemmerer, Robert T Furbank","doi":"10.1093/plcell/koaf005","DOIUrl":"https://doi.org/10.1093/plcell/koaf005","url":null,"abstract":"Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high temperature stress for two weeks (42°C, compared to 28°C). This resulted in stunted growth, but surprisingly had little impact on leaf thickness, leaf area-based photosynthetic rates and bundle sheath leakiness. Dark respiration rates increased and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants. Abscisic acid and indole-acetic acid–amino acid conjugates accumulated in the heat-stressed plants, consistent with transcriptional changes. Leaf transcriptomics, proteomics and metabolomics analyses were carried out and mapped onto the metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism and phytohormone biosynthesis and signaling. An in-depth analysis of correlations between transcripts and their corresponding proteins revealed strong differences between groups in the strengths and signs of correlations. Overall, many stress signaling pathways were upregulated, consistent with multiple signals leading to reduced plant growth. A systems-based model of the plant response to long-term heat stress is presented based on the oxidative stress, phytohormone and sugar signaling pathways.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2025-01-08DOI: 10.1093/plcell/koae300
Xiaoqing Sun, Matthew LaVoie, Paul A Lefebvre, Sean D Gallaher, Anne G Glaesener, Daniela Strenkert, Radhika Mehta, Sabeeha S Merchant, Carolyn D Silflow
{"title":"Identification of a gene controlling levels of the copper response regulator 1 transcription factor in Chlamydomonas reinhardtii","authors":"Xiaoqing Sun, Matthew LaVoie, Paul A Lefebvre, Sean D Gallaher, Anne G Glaesener, Daniela Strenkert, Radhika Mehta, Sabeeha S Merchant, Carolyn D Silflow","doi":"10.1093/plcell/koae300","DOIUrl":"https://doi.org/10.1093/plcell/koae300","url":null,"abstract":"Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia. By selecting for mutants able to swim even in normoxia, we obtained strains that constitutively express the reporter gene. One identified mutant was affected in a gene encoding an F-box protein 3 (FBXO3) that participates in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 (constitutive expression of hydrogenases and copper-responsive genes), triggers the upregulation of genes known to be targets of copper response regulator 1 (CRR1), a transcription factor involved in the nutritional copper signaling pathway and in the hypoxia response pathway. CRR1 was required for upregulating the HYDA1 reporter gene expression in response to hypoxia and for the constitutive expression of the reporter gene in cehc1-1 mutant cells. The CRR1 protein, normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 facilitates CRR1 degradation. Our results describe a previously unknown pathway for CRR1 inhibition and possibly other pathways leading to complex metabolic changes.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-12-20DOI: 10.1093/plcell/koae328
Da-Gang Hu, Mengxia Zhang, Chunlong Li, Ting-Ting Zhao, Lian-Da Du, Quan Sun, Chu-Kun Wang, Dong Meng, Cui-Hui Sun, Zhangjun Fei, Abhaya M Dandekar, Lailiang Cheng
{"title":"A Linker Histone Acts as a Transcription Factor to Orchestrate Malic Acid Accumulation in Apple in Response to Sorbitol","authors":"Da-Gang Hu, Mengxia Zhang, Chunlong Li, Ting-Ting Zhao, Lian-Da Du, Quan Sun, Chu-Kun Wang, Dong Meng, Cui-Hui Sun, Zhangjun Fei, Abhaya M Dandekar, Lailiang Cheng","doi":"10.1093/plcell/koae328","DOIUrl":"https://doi.org/10.1093/plcell/koae328","url":null,"abstract":"High carbohydrate availability promotes malic acid accumulation in fleshy fruits, but the underlying mechanism is not known. Here, we show that antisense repression of ALDOSE-6-PHOSPHATE REDUCTASE in apple (Malus domestica) decreases the concentrations of sorbitol and malate and the transcript levels of several genes involved in vacuolar malate transport, including the aluminum-activated malate transporter (ALMT) gene MdALMT9 (Ma1), the P-ATPase gene MdPH5, the MYB transcription factor gene MdMYB73, and the cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1, in fruit and leaves. We identified a linker histone H1 variant, MdH1.1, which complements the Arabidopsis (Arabidopsis thaliana) H1 deficient mutant and functions as a transcription factor. MdH1.1 activates MdMYB73, MdCIbHLH1, and MdPH5 expression by directly binding to their promoters. MdMYB73, in return, binds to the promoter of MdH1.1 to enhance its transcription. This MdH1.1-MdMYB73 feedback loop responds to sorbitol, regulating Ma1 expression. Antisense suppression of either MdH1.1 or MdMYB73 expression significantly decreases whereas overexpression increases Ma1 expression and malate accumulation. These findings demonstrate that MdH1.1, in addition to being an architectural protein for chromatin structure, operates as a transcription factor orchestrating malic acid accumulation in response to sorbitol, revealing how sugar signaling modulates vacuolar malate transport via a linker histone in plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-12-19DOI: 10.1093/plcell/koae327
Souvik Dhar, Soo Youn Kim, Heeji Shin, Jongsung Park, Ji-Young Lee
{"title":"The molecular framework balancing growth and defense in response to PEP-induced signals in Arabidopsis","authors":"Souvik Dhar, Soo Youn Kim, Heeji Shin, Jongsung Park, Ji-Young Lee","doi":"10.1093/plcell/koae327","DOIUrl":"https://doi.org/10.1093/plcell/koae327","url":null,"abstract":"Elevated stress signaling compromises plant growth by suppressing proliferative and formative division in the meristem. Plant Elicitor Peptide (PEP), an endogenous danger signal triggered by biotic and abiotic stresses in Arabidopsis (Arabidopsis thaliana), suppresses proliferative division, alters xylem vessel organization, and disrupts cell-to-cell symplastic connections in roots. To gain insight into the dynamic molecular framework that modulates root development under elevated danger signals, we performed a time-course RNA-sequencing analysis of the root meristem after synthetic PEP1 treatment. Our analyses revealed that SALT TOLERANCE ZINC FINGER (STZ) and its homologs are a potential nexus between the stress response and proliferative cell cycle regulation. Through functional, phenotypic, and transcriptomic analyses, we observed that STZ differentially controls the cell cycle, cell differentiation, and stress response genes in various tissue layers of the root meristem. Moreover, we determined the STZ expression level critical for enabling the growth–defense tradeoff. These findings provide valuable information about the dynamic gene expression changes that occur upon perceiving danger signals in the root meristem and potential engineering strategies to generate stress-resilient plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-12-18DOI: 10.1093/plcell/koae277
Daniel B Sloan, Amanda K Broz, Shady A Kuster, Viraj Muthye, Alejandro Peñafiel-Ayala, Jennifer R Marron, Dennis V Lavrov, Luis G Brieba
{"title":"Expansion of the MutS gene family in plants","authors":"Daniel B Sloan, Amanda K Broz, Shady A Kuster, Viraj Muthye, Alejandro Peñafiel-Ayala, Jennifer R Marron, Dennis V Lavrov, Luis G Brieba","doi":"10.1093/plcell/koae277","DOIUrl":"https://doi.org/10.1093/plcell/koae277","url":null,"abstract":"The widely distributed MutS gene family functions in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded this gene family in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes. Cyanobacterial-like MutS1 and MutS2 genes were ancestrally gained via plastid endosymbiotic gene transfer. MutS1 was subsequently lost in seed plants, whereas MutS2 was duplicated in Viridiplantae (i.e., land plants and green algae). Viridiplantae also have two anciently duplicated copies of the eukaryotic MSH6 gene and acquired MSH1 via horizontal gene transfer - potentially from a nucleocytovirus. Despite sharing a name, \"plant MSH1\" is not directly related to the MSH1 gene in some fungi and animals, which may be an ancestral eukaryotic gene acquired via mitochondrial endosymbiosis and subsequently lost in most eukaryotes. There has been substantial progress in understanding the functions of plant MSH1 and MSH6 genes, but the cyanobacterial-like MutS1 and MutS2 genes remain uncharacterized. Known functions of bacterial homologs and predicted protein structures, including fusions to diverse nuclease domains, provide hypotheses about potential molecular mechanisms. Because most plant-specific MutS proteins are mitochondrial and/or plastid-targeted, the expansion of this family has played a large role in shaping plant organelle genetics.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-12-18DOI: 10.1093/plcell/koae333
Yuanyuan Li, Sirui Zhu
{"title":"Polar localization and local translation of RHO-RELATED PROTEIN FROM PLANTS2 mRNAs promote root hair growth in Arabidopsis","authors":"Yuanyuan Li, Sirui Zhu","doi":"10.1093/plcell/koae333","DOIUrl":"https://doi.org/10.1093/plcell/koae333","url":null,"abstract":"Root hairs are tip-growing cells that anchor plants in the soil and are critical for water uptake, nutrient acquisition, and plant–environment interactions. While the molecular mechanisms that maintain the polar growth of root hairs through the asymmetric distribution of proteins, such as RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2), have been described, it is unclear whether and how the transcripts encoding these tip-localized proteins are polarly localized and locally translated. Here, we demonstrated that ROP2 mRNA exhibits polar localization in Arabidopsis (Arabidopsis thaliana) root hairs. We showed that region VI (250–350 bp downstream of the stop codon) of the ROP2 3′ untranslated region (UTR) is necessary for proper mRNA localization. Moreover, region VI–mediated ROP2 mRNA polar localization was required for local translation of ROP2 transcripts, contributing to the proper subcellular localization of ROP2. Region III (100–200 bp downstream of the stop codon) influenced the local translation of ROP2 mRNA. Phenotypic investigations demonstrated that both regions III and VI of the ROP2 3′ UTR play crucial roles in modulating root hair growth. These findings help explain the local protein biosynthesis of ROP2, advancing our understanding of the regulatory mechanism and genetic basis of mRNA localization and local translation in plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SnRK1α1-mediated RBOH1 phosphorylation regulates reactive oxygen species to enhance tolerance to low nitrogen in tomato","authors":"Xuelian Zheng, Hongfei Yang, Jinping Zou, Weiduo Jin, Zhenyu Qi, Ping Yang, Jingquan Yu, Jie Zhou","doi":"10.1093/plcell/koae321","DOIUrl":"https://doi.org/10.1093/plcell/koae321","url":null,"abstract":"Nitrogen is essential for plant growth and development. SNF1-related protein kinase 1 (SnRK1) is an evolutionarily conserved protein kinase pivotal for regulating plant responses to nutrient deficiency. Here, we discovered that the expression and activity of the SnRK1 α-catalytic subunit (SnRK1α1) increased in response to low-nitrogen stress. SnRK1α1 overexpression enhanced seedling tolerance, nitrate uptake capacity, apoplastic reactive oxygen species (ROS) accumulation, and NADPH oxidase activity in tomato (Solanum lycopersicum L.) under low-nitrogen stress compared to wild type plants, while snrk1α1 mutants exhibited the opposite phenotypes. Mutation of the NADPH oxidase gene Respiratory burst oxidase homolog 1 (RBOH1) suppressed numerous nitrate uptake and metabolism genes during low-nitrogen stress. rboh1 mutants displayed lower NADPH oxidase activity, apoplastic ROS production, and seedling tolerance to low nitrogen. Silencing RBOH1 expression also compromised SnRK1α1-mediated seedling tolerance to low-nitrogen stress. SnRK1α1 interacts with and activates RBOH1 through phosphorylation of three N-terminal serine residues, leading to increased apoplastic ROS production and enhanced tolerance to low nitrogen conditions. Furthermore, RBOH1-dependent ROS oxidatively modified the transcription factor TGA4 at residue Cys-334, which increased NRT1.1 and NRT2.1 expression under low-nitrogen stress. These findings reveal a SnRK1α1-mediated signaling pathway and highlight the essential role of RBOH1-dependent ROS production in enhancing plant tolerance to low nitrogen.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-12-11DOI: 10.1093/plcell/koae316
Xueqi Li, Sujie Zhang, Chenyang Wang, Bin Ren, Fang Yan, Shaofang Li, Carl Spetz, Jinguang Huang, Xueping Zhou, Huanbin Zhou
{"title":"Efficient in situ epitope tagging of rice genes by nuclease-mediated prime editing","authors":"Xueqi Li, Sujie Zhang, Chenyang Wang, Bin Ren, Fang Yan, Shaofang Li, Carl Spetz, Jinguang Huang, Xueping Zhou, Huanbin Zhou","doi":"10.1093/plcell/koae316","DOIUrl":"https://doi.org/10.1093/plcell/koae316","url":null,"abstract":"In situ epitope tagging is crucial for probing gene expression, protein localization, and the dynamics of protein interactions within their natural cellular context. However, the practical application of this technique in plants presents considerable hurdles. Here, we comprehensively explored the potential of the CRISPR/Cas nuclease-mediated prime editing and different DNA repair pathways in epitope tagging of endogenous rice (Oryza sativa) genes. We found that a SpCas9 nuclease/microhomology-mediated end joining (MMEJ)-based prime editing (PE) strategy (termed NM-PE) facilitates more straightforward and efficient gene tagging compared to the conventional and other derivative PE methods. Furthermore, the PAM-flexible SpRY and ScCas9 nucleases-based prime editors have been engineered and implemented for the tagging of endogenous genes with diverse epitopes, significantly broadening the applicability of NM-PE in rice. Moreover, NM-PE has been successfully adopted in simultaneous tagging of the MAP kinase (MPK) genes OsMPK1 and OsMPK13 in rice plants with c-Myc and HA tags, respectively. Taken together, our results indicate great potential of the NM-PE toolkit in the targeted gene tagging for Rice Protein Tagging Project, gene function study and genetic improvement.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}