The Plant CellPub Date : 2024-09-20DOI: 10.1093/plcell/koae257
Regina Mencia
{"title":"From histone acetylation to abundance: The role of GCN5-CAMTA2 interaction in wheat grain weight.","authors":"Regina Mencia","doi":"10.1093/plcell/koae257","DOIUrl":"https://doi.org/10.1093/plcell/koae257","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-09-18DOI: 10.1093/plcell/koae253
Leonard Blaschek
{"title":"Well prepared: How trichome polymorphism creates an early-warning system against herbivory.","authors":"Leonard Blaschek","doi":"10.1093/plcell/koae253","DOIUrl":"https://doi.org/10.1093/plcell/koae253","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-09-18DOI: 10.1093/plcell/koae254
Nora Flynn
{"title":"Shedding light on photosystem II components in the dark.","authors":"Nora Flynn","doi":"10.1093/plcell/koae254","DOIUrl":"https://doi.org/10.1093/plcell/koae254","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NUCLEAR FACTOR-Y–POLYCOMB REPRESSIVE COMPLEX2 dynamically orchestrates starch and seed storage protein biosynthesis in wheat","authors":"Jinchao Chen, Long Zhao, Haoran Li, Changfeng Yang, Xuelei Lin, Yujing Lin, Hao Zhang, Mengxia Zhang, Xiaomin Bie, Peng Zhao, Shengbao Xu, David Seung, Xiansheng Zhang, Xueyong Zhang, Yingyin Yao, Dongzhi Wang, Jun Xiao","doi":"10.1093/plcell/koae256","DOIUrl":"https://doi.org/10.1093/plcell/koae256","url":null,"abstract":"The endosperm in cereal grains is instrumental in determining grain yield and seed quality, as it controls starch and seed storage protein (SSP) production. In this study, we identified a specific nuclear factor-Y (NF-Y) trimeric complex in wheat (Triticum aestivum L.), consisting of TaNF-YA3-D, TaNF-YB7-B, and TaNF-YC6-B, and exhibiting robust expression within the endosperm during grain filling. Knockdown of either TaNF-YA3 or TaNF-YC6 led to reduced starch but increased gluten protein levels. TaNF-Y indirectly boosted starch biosynthesis genes by repressing TaNAC019, a repressor of cytosolic small ADP-glucose pyrophosphorylase 1a (TacAGPS1a), sucrose synthase 2 (TaSuS2), and other genes involved in starch biosynthesis. Conversely, TaNF-Y directly inhibited the expression of Gliadin-γ-700 (TaGli-γ-700) and low molecular weight-400 (TaLMW-400). Furthermore, TaNF-Y components interacted with SWINGER (TaSWN), the histone methyltransferase subunit of Polycomb repressive complex 2 (PRC2), to repress TaNAC019, TaGli-γ-700, and TaLMW-400 expression through trimethylation of histone H3 at lysine 27 (H3K27me3) modification. Notably, weak mutation of FERTILIZATION INDEPENDENT ENDOSPERM (TaFIE), a core PRC2 subunit, reduced starch but elevated gliadin and LMW-GS contents. Intriguingly, sequence variation within the TaNF-YB7-B coding region was linked to differences in starch and SSP content. Distinct TaNF-YB7-B haplotypes affect its interaction with TaSWN-B, influencing the repression of targets like TaNAC019 and TaGli-γ-700. Our findings illuminate the intricate molecular mechanisms governing TaNF-Y–PRC2-mediated epigenetic regulation for wheat endosperm development. Manipulating the TaNF-Y complex holds potential for optimizing grain yield and enhancing grain quality.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-09-11DOI: 10.1093/plcell/koae251
Huichao Liu, Jie Zhang, Junxue Wang, Zhibin Fan, Xiaoxiao Qu, Min Yan, Chunxia Zhang, Kezhen Yang, Junjie Zou, Jie Le
{"title":"The rice R2R3 MYB transcription factor FOUR LIPS connects brassinosteroid signaling to lignin deposition and leaf angle","authors":"Huichao Liu, Jie Zhang, Junxue Wang, Zhibin Fan, Xiaoxiao Qu, Min Yan, Chunxia Zhang, Kezhen Yang, Junjie Zou, Jie Le","doi":"10.1093/plcell/koae251","DOIUrl":"https://doi.org/10.1093/plcell/koae251","url":null,"abstract":"Leaf angle is an important agronomic trait for crop architecture and yield. In rice (Oryza sativa), the lamina joint is a unique structure connecting the leaf blade and sheath that determines leaf angle. Brassinosteroid (BR) signaling involving GLYCOGEN SYNTHASE KINASE-3 (GSK3)/SHAGGY-like kinases and BRASSINAZOLE-RESISTANT1 (BZR1) has a central role in regulating leaf angle in rice. In this study, we identified the atypical R2R3-MYB transcription factor FOUR LIPS (OsFLP), the rice homolog of Arabidopsis (Arabidopsis thaliana) AtFLP, as a participant in BR-regulated leaf angle formation. The spatiotemporal specificity of OsFLP expression in the lamina joint was closely associated with lignin deposition in vascular bundles and sclerenchyma cells. OsFLP mutation caused loose plant architecture with droopy flag leaves and hypersensitivity to BRs. OsBZR1 directly targeted OsFLP, and OsFLP transduced BR signals to lignin deposition in the lamina joint. Moreover, OsFLP promoted the transcription of the phenylalanine ammonia-lyase family genes OsPAL4 and OsPAL6. Intriguingly, OsFLP feedback regulated OsGSK1 transcription and OsBZR1 phosphorylation status. In addition, an Ala-to-Thr substitution within the OsFLP R3 helix-turn-helix domain, an equivalent mutation to that in Osflp-1, affected the DNA-binding ability and transcriptional activity of OsFLP. Our results reveal that OsFLP functions with OsGSK1 and OsBZR1 in BR signaling to maintain optimal leaf angle by modulating the lignin deposition in mechanical tissues of the lamina joint.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-09-11DOI: 10.1093/plcell/koae249
Chengwei Yi, Uwe Gerken, Kun Tang, Michael Philipp, Matias D Zurbriggen, Jürgen Köhler, Andreas Möglich
{"title":"Plant Phytochrome Interactions Decode Light and Temperature Signals","authors":"Chengwei Yi, Uwe Gerken, Kun Tang, Michael Philipp, Matias D Zurbriggen, Jürgen Köhler, Andreas Möglich","doi":"10.1093/plcell/koae249","DOIUrl":"https://doi.org/10.1093/plcell/koae249","url":null,"abstract":"Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-06-28DOI: 10.1093/plcell/koae189
Biying Sun, Jie Huang, Liang Kong, Chuyun Gao, Fei Zhao, Jiayong Shen, Tian Wang, Kangping Li, Luyao Wang, Yuanchao Wang, Dennis A Halterman, Suomeng Dong
{"title":"Alternative splicing of a potato disease resistance gene maintains homeostasis between growth and immunity","authors":"Biying Sun, Jie Huang, Liang Kong, Chuyun Gao, Fei Zhao, Jiayong Shen, Tian Wang, Kangping Li, Luyao Wang, Yuanchao Wang, Dennis A Halterman, Suomeng Dong","doi":"10.1093/plcell/koae189","DOIUrl":"https://doi.org/10.1093/plcell/koae189","url":null,"abstract":"Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in two transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant–microbe interactions.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141463100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-05-31DOI: 10.1093/plcell/koae101
Sarah Philipps, Tobias Pfennig, Elouën Corvest, Marvin van Aalst, Lisa Fürtauer, Anna Matuszyńska
{"title":"Computational Photosynthesis (ComPhot): Simulation-Based Learning Platform to Study Photosynthesis","authors":"Sarah Philipps, Tobias Pfennig, Elouën Corvest, Marvin van Aalst, Lisa Fürtauer, Anna Matuszyńska","doi":"10.1093/plcell/koae101","DOIUrl":"https://doi.org/10.1093/plcell/koae101","url":null,"abstract":"Studies show the advantage of active versus passive learning formats in delivering complicated concepts (Minocha and Clarke, 2009; Pluta et al., 2013). Hence, interactive teaching tools are not only more often positively evaluated by students but also contribute to better life-long teaching outcomes (Ang et al., 2021). Following this evidence, we created ComPhot, a stand-alone learning platform for motivated students and researchers. It guides the user in studying photosynthesis as a well-known biological process with the support of a computational model. ComPhot is a no-code, easy-to-use tool to lower the entry bar for starting the journey across computational biology and to provide insights into how photosynthesis and modeling photosynthesis work. This user-friendly interactive teaching platform can be used individually or to support teachers following a syllabus in biology, to include the concept of computational biology or mathematics, to show the possible field of application of mathematics to biology. ComPhot introduces and explains the biochemical background of our simulated system and how to translate it into mathematical terms. We provide diverse teaching materials that include text, guiding questions, videos, and, most importantly, simulations. Within our simulators, users can perform computational photosynthesis modeling in their browser by simply setting and manipulating slider bars. Our comprehensive approach conveys fundamental insights into photosynthesis, photoprotection, and fluorescence measurements and empowers users to devise their own in silico experiments by varying light conditions or designing synthetic strains. This tool acts as a stepping stone, fostering engagement and understanding while propelling research and innovation in photosynthesis. Although this guide has been written in English, we are proud to release the tool in four of the developers’ languages to expand the audience: English, German, French, and Polish.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Plant CellPub Date : 2024-05-03DOI: 10.1093/plcell/koae141
Erika Isono, Jianming Li, Pablo Pulido, Wei Siao, Steven H Spoel, Zhishuo Wang, Xiaohong Zhuang, Marco Trujillo
{"title":"Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants","authors":"Erika Isono, Jianming Li, Pablo Pulido, Wei Siao, Steven H Spoel, Zhishuo Wang, Xiaohong Zhuang, Marco Trujillo","doi":"10.1093/plcell/koae141","DOIUrl":"https://doi.org/10.1093/plcell/koae141","url":null,"abstract":"Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate’s physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as “degrons”, which can assume a range of structural configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system, but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}