{"title":"Effects of spatial location on distractor interference.","authors":"Dirk Kerzel, Martin Constant","doi":"10.1167/jov.24.9.4","DOIUrl":"10.1167/jov.24.9.4","url":null,"abstract":"<p><p>When target and distractor stimuli are close together, they activate the same neurons and there is ambiguity as to what the neural activity represents. It has been suggested that the ambiguity is resolved by spatial competition between target and nontarget stimuli. A competitive advantage is conveyed by bottom-up biases (e.g., stimulus saliency) and top-down biases (e.g., the match to a stored representation of the target stimulus). Here, we tested the hypothesis that regions with high perceptual performance may provide a bottom-up bias, resulting in increased distractor interference. Initially, we focused on two known anisotropies. At equal distance from central fixation, perceptual performance is better along the horizontal than the vertical meridian, and in the lower than in the upper visual hemifield. Consistently, interference from distractors on the horizontal meridian was greater than interference from distractors on the vertical meridian. However, distractors in the lower hemifield interfered less than distractors in the upper visual hemifield, which is contrary to the known anisotropy. These results were obtained with targets and distractors on opposite meridians. Further, we observed greater interference from distractors on the meridians compared with distractors on the diagonals, possibly reflecting anisotropies in attentional scanning. Overall, the results are only partially consistent with the hypothesis that distractor interference is larger for distractors on regions with high perceptual performance.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 9","pages":"4"},"PeriodicalIF":2.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Sun,Si-Yu Wang,Lin-Zhe Zhan,Fan-Huan You,Qian Sun
{"title":"A Bayesian inference model can predict the effects of attention on the serial dependence in heading estimation from optic flow.","authors":"Qi Sun,Si-Yu Wang,Lin-Zhe Zhan,Fan-Huan You,Qian Sun","doi":"10.1167/jov.24.9.11","DOIUrl":"https://doi.org/10.1167/jov.24.9.11","url":null,"abstract":"It has been demonstrated that observers can accurately estimate their self-motion direction (i.e., heading) from optic flow, which can be affected by attention. However, it remains unclear how attention affects the serial dependence in the estimation. In the current study, participants conducted two experiments. The results showed that the estimation accuracy decreased when attentional resources allocated to the heading estimation task were reduced. Additionally, the estimates of currently presented headings were biased toward the headings of previously seen headings, showing serial dependence. Especially, this effect decreased (increased) when the attentional resources allocated to the previously (currently) seen headings were reduced. Furthermore, importantly, we developed a Bayesian inference model, which incorporated attention-modulated likelihoods and qualitatively predicted changes in the estimation accuracy and serial dependence. In summary, the current study shows that attention affects the serial dependence in heading estimation from optic flow and reveals the Bayesian computational mechanism behind the heading estimation.","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"20 1","pages":"11"},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hind Drissi, Tristan Jurkiewicz, Audrey Vialatte, Aarlenne Zein Khan, Laure Pisella
{"title":"Impact of macular scotoma and tubular vision on oculomotor behavior and performance in visuospatial comparison tasks.","authors":"Hind Drissi, Tristan Jurkiewicz, Audrey Vialatte, Aarlenne Zein Khan, Laure Pisella","doi":"10.1167/jov.24.9.2","DOIUrl":"10.1167/jov.24.9.2","url":null,"abstract":"<p><p>Our aim in this study was to understand how we perform visuospatial comparison tasks by analyzing ocular behavior and to examine how restrictions in macular or peripheral vision disturb ocular behavior and task performance. Two groups of 18 healthy participants with normal or corrected visual acuity performed visuospatial comparison tasks (computerized version of the elementary visuospatial perception [EVSP] test) (Pisella et al., 2013) with a gaze-contingent mask simulating either tubular vision (first group) or macular scotoma (second group). After these simulations of pathological conditions, all participants also performed the EVSP test in full view, enabling direct comparison of their oculomotor behavior and performance. In terms of oculomotor behavior, compared with the full view condition, alternation saccades between the two objects to compare were less numerous in the absence of peripheral vision, whereas the number of within-object exploration saccades decreased in the absence of macular vision. The absence of peripheral vision did not affect accuracy except for midline judgments, but the absence of central vision impaired accuracy across all visuospatial subtests. Besides confirming the crucial role of the macula for visuospatial comparison tasks, these experiments provided important insights into how sensory disorder modifies oculomotor behavior with or without consequences on performance accuracy.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 9","pages":"2"},"PeriodicalIF":2.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Pilar Aivar, Chia-Ling Li, Matthew H Tong, Dmitry M Kit, Mary M Hayhoe
{"title":"Knowing where to go: Spatial memory guides eye and body movements in a naturalistic visual search task.","authors":"M Pilar Aivar, Chia-Ling Li, Matthew H Tong, Dmitry M Kit, Mary M Hayhoe","doi":"10.1167/jov.24.9.1","DOIUrl":"10.1167/jov.24.9.1","url":null,"abstract":"<p><p>Most research on visual search has used simple tasks presented on a computer screen. However, in natural situations visual search almost always involves eye, head, and body movements in a three-dimensional (3D) environment. The different constraints imposed by these two types of search tasks might explain some of the discrepancies in our understanding concerning the use of memory resources and the role of contextual objects during search. To explore this issue, we analyzed a visual search task performed in an immersive virtual reality apartment. Participants searched for a series of geometric 3D objects while eye movements and head coordinates were recorded. Participants explored the apartment to locate target objects whose location and visibility were manipulated. For objects with reliable locations, we found that repeated searches led to a decrease in search time and number of fixations and to a reduction of errors. Searching for those objects that had been visible in previous trials but were only tested at the end of the experiment was also easier than finding objects for the first time, indicating incidental learning of context. More importantly, we found that body movements showed changes that reflected memory for target location: trajectories were shorter and movement velocities were higher, but only for those objects that had been searched for multiple times. We conclude that memory of 3D space and target location is a critical component of visual search and also modifies movement kinematics. In natural search, memory is used to optimize movement control and reduce energetic costs.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 9","pages":"1"},"PeriodicalIF":2.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norick R Bowers, Josselin Gautier, Susana T L Chung, Martin S Banks, Austin Roorda
{"title":"The preferred retinal loci when the eyes converge.","authors":"Norick R Bowers, Josselin Gautier, Susana T L Chung, Martin S Banks, Austin Roorda","doi":"10.1167/jov.24.9.15","DOIUrl":"10.1167/jov.24.9.15","url":null,"abstract":"<p><p>The preferred retinal locus (PRL) is the position on the retina to which humans direct stimuli during fixation. In healthy normal eyes, it has been shown to be very stable across time and between different tasks. Previous measurements of the PRL have been made under monocular viewing conditions. The current study examines where the PRLs in the two eyes' retinas are when subjects fixate binocularly and whether they shift when the demand for the eyes to converge is changed. Our apparatus allows us to see exactly where binocular stimuli fell on the two retinas during binocular fixation. Thus, our technique bypasses some of the issues involved in measuring binocular alignment with subjective techniques and previous objective techniques that use conventional eye trackers. These results show that PRLs shift slightly but systematically as the demand for convergence increases. The shifts cause under-convergence (also called exo fixation disparity) for near targets. They are not large enough to cause a break in binocular fusion. The fixation disparity we observed with increasing vergence demand is similar to fixation disparity observed in previous reports.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 9","pages":"15"},"PeriodicalIF":2.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neural correlates of dynamic lightness induction.","authors":"Amna Malik,Huseyin Boyaci","doi":"10.1167/jov.24.9.10","DOIUrl":"https://doi.org/10.1167/jov.24.9.10","url":null,"abstract":"The lightness of a surface depends not only on the amount of light reflected off, it but also on the context in which it is embedded. Despite a long history of research, neural correlates of context-dependent lightness perception remain a topic of ongoing debate. Here, we seek to expand on the existing literature by measuring functional magnetic resonance imaging (fMRI) responses to lightness variations induced by the context. During the fMRI experiment, we presented 10 participants with a dynamic stimulus in which either the luminance of a disk or its surround is modulated at four different frequencies ranging from 1 to 8 Hz. Behaviorally, when the surround luminance is modulated at low frequencies, participants perceive an illusory change in the lightness of the disk (lightness induction). In contrast, they perceive little or no induction at higher frequencies. Using this frequency dependence and controlling for long-range responses to border contrast and luminance changes, we found that activity in the primary visual cortex (V1) correlates with lightness induction, providing further evidence for the involvement of V1 in the processing of context-dependent lightness.","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"1 1","pages":"10"},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abigail P Finch, Maydel Fernandez-Alonso, Andrew K Kirby, Jenny C A Read, Gordon D Love
{"title":"Focusing on mixed narrow band stimuli: Implications for mechanisms of accommodation and displays.","authors":"Abigail P Finch, Maydel Fernandez-Alonso, Andrew K Kirby, Jenny C A Read, Gordon D Love","doi":"10.1167/jov.24.9.14","DOIUrl":"10.1167/jov.24.9.14","url":null,"abstract":"<p><p>The eye has considerable chromatic aberration, meaning that the accommodative demand varies with wavelength. Given this, how does the eye accommodate to light of differing spectral content? Previous work is not conclusive but, in general, the eye focuses in the center of the visible spectrum for broadband light, and it focuses at a distance appropriate for individual wavelengths for narrowband light. For stimuli containing two colors, there are also mixed reports. This is the second of a series of two papers where we investigate accommodation in relation to chromatic aberration Fernandez-Alonso, Finch, Love, and Read (2024). In this paper, for the first time, we measure how the eye accommodates to images containing two narrowband wavelengths, with varying relative luminance under monocular conditions. We find that the eye tends to accommodate between the two extremes, weighted by the relative luminance. At first sight, this seems reasonable, but we show that image quality would be maximized if the eye instead accommodated on the more luminous wavelength. Next we explore several hypotheses as to what signal the eye might be using to drive accommodation and compare these with the experimental data. We show that the data is best explained if the eye seeks to maximize contrast at low spatial frequencies. We consider the implication of these results for both the mechanism behind accommodation, and for modern displays containing narrowband illuminants.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 9","pages":"14"},"PeriodicalIF":2.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Similar extrapolation of moving objects' locations for perception and saccades.","authors":"Eli Brenner,Jeroen B J Smeets","doi":"10.1167/jov.24.9.7","DOIUrl":"https://doi.org/10.1167/jov.24.9.7","url":null,"abstract":"","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"12 1","pages":"7"},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kirsten Hötting, Idris Shareef, Ann-Kathrin Rogge, Daniel Hamacher, Astrid Zech, Ramesh Kekunnaya, Beula Christy, Brigitte Röder
{"title":"Postural control depends on early visual experience.","authors":"Kirsten Hötting, Idris Shareef, Ann-Kathrin Rogge, Daniel Hamacher, Astrid Zech, Ramesh Kekunnaya, Beula Christy, Brigitte Röder","doi":"10.1167/jov.24.9.3","DOIUrl":"10.1167/jov.24.9.3","url":null,"abstract":"<p><p>The present study investigated the role of early visual experience in the development of postural control (balance) and locomotion (gait). In a cross-sectional design, balance and gait were assessed in 59 participants (ages 7-43 years) with a history of (a) transient congenital blindness, (b) transient late-onset blindness, (c) permanent congenitally blindness, or (d) permanent late-onset blindness, as well as in normally sighted controls. Cataract-reversal participants who experienced a transient phase of blindness and gained sight through cataract removal surgery showed worse balance performance compared with sighted controls even when tested with eyes closed. Individuals with reversed congenital cataracts performed worse than individuals with reversed developmental (late emerging) cataracts. Balance performance in congenitally cataract-reversal participants when tested with eyes closed was not significantly different from that in permanently blind participants. In contrast, their gait parameters did not differ significantly from those of sighted controls. The present findings highlight both the need for visual calibration of proprioceptive and vestibular systems and the crossmodal adaptability of locomotor functions.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 9","pages":"3"},"PeriodicalIF":2.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}