{"title":"Eddy Current Microsensor and RBF Neural Networks for Detection and Characterization of Small Surface Defects","authors":"Chifaa ABER, Azzedine Hamid, M. Elchikh, T. Lebey","doi":"10.2478/msr-2022-0015","DOIUrl":"https://doi.org/10.2478/msr-2022-0015","url":null,"abstract":"Abstract The growing complexity of industrial processes and manufactured parts, the growing need for safety in service and the desire to optimize the life of parts, require the implementation of increasingly complex quality assessments. Among the various anomalies to consider, sub-millimeter surface defects must be the subject of particular care. These defects are extremely dangerous as they are often the starting point for larger defects such as fatigue cracks, which can lead to the destruction of the parts. Penetrant testing is now widely used for this type of defect, due to its good performance. Nevertheless, it should be abandoned eventually due to environmental standards. Among the possible alternatives, the use of eddy currents (EC) for conductive materials is a reliable, fast, and inexpensive alternative. The study concerns the design and modeling of eddy current probe structures comprising micro-sensors for non-destructive testing. The moving band finite element method is implemented for this purpose to take into account the movement of the sensor, experimental validations were conducted on a nickel-based alloy specimen. The real and imaginary parts of the impedance at every position of the sensor computed by experiments and simulations were in good agreement. The crack detection quality was quantified and the geometric characteristics of the defects were estimated using RBF NN (Radial Basis Function Neural Networks) that were designed and implemented on the acquired signals.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"112 - 121"},"PeriodicalIF":0.9,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43784245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Yu, Przystupa Krzysztof, Lingyu Yan, V. Maksymovych, Roman Stakhiv, Àndrii Malohlovets, O. Kochan
{"title":"Development of Modified Blum-Blum-Shub Pseudorandom Sequence Generator and its Use in Education","authors":"Shanshan Yu, Przystupa Krzysztof, Lingyu Yan, V. Maksymovych, Roman Stakhiv, Àndrii Malohlovets, O. Kochan","doi":"10.2478/msr-2022-0018","DOIUrl":"https://doi.org/10.2478/msr-2022-0018","url":null,"abstract":"Abstract In information security systems, the algorithm of the Blum-Blum-Shub (BBS) generator, which is based on the use of a one-way function and is a cryptographically secure pseudorandom number generator, became widespread. In this paper, the problem of the analysis of modified algorithms of the BBS generator operation is considered to improve their statistical characteristics, namely, the sequence repetition period. It has been established that in order to improve the characteristics of the classic BBS algorithm, it is necessary to systematize approaches to change the recurrent equation itself, the relationship between the current and the previous members of the sequence. For this purpose, a generalized unified model of the modification of the classical BBS algorithm is derived. The repetition period with computational complexity were analyzed for classical algorithm and 80 proposed modifications. A gain in statistical characteristics is improved with slight increase in the required computing power of the system. The proposed modified BBS pseudorandom sequence generator can be used in training of students when teaching cryptographic stability of information security systems. The study of this generator combines the knowledge of students acquired in both digital electronics and mathematics.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"143 - 151"},"PeriodicalIF":0.9,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41605358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunzhi Wang, Hongzhe Jiao, L. Anatychuk, N. Pasyechnikova, V. Naumenko, O. Zadorozhnyy, L. Vikhor, R. Kobylianskyi, R. Fedoriv, O. Kochan
{"title":"Development of a Temperature and Heat Flux Measurement System Based on Microcontroller and its Application in Ophthalmology","authors":"Chunzhi Wang, Hongzhe Jiao, L. Anatychuk, N. Pasyechnikova, V. Naumenko, O. Zadorozhnyy, L. Vikhor, R. Kobylianskyi, R. Fedoriv, O. Kochan","doi":"10.2478/msr-2022-0009","DOIUrl":"https://doi.org/10.2478/msr-2022-0009","url":null,"abstract":"Abstract The paper describes the design and technical parameters of a medical thermoelectric device developed for diagnosing and monitoring the ophthalmic diseases. The main elements of the device are a specially designed thermoelectric heat flux sensor and a thermocouple temperature sensor connected to a data acquisition unit. The sensor is a thermoelectric micro-module that converts the heat flux into an electric voltage, which is recorded by the measuring channel of the data acquisition unit. The device allows high-precision measurements of both heat flux and temperature from the ocular surface. The paper contains examples of clinical piloting of the device.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"73 - 79"},"PeriodicalIF":0.9,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48570315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Testing of Wireless Motion Gauges for Two Collaborative Robot Arms","authors":"Yongsik Kim, N. Dagalakis, J. Marvel, G. Cheok","doi":"10.2478/msr-2022-0011","DOIUrl":"https://doi.org/10.2478/msr-2022-0011","url":null,"abstract":"Abstract Most existing robot performance evaluation methods focus on single robotic arms performing independent motion tasks. In this paper, a motion gauge is proposed to evaluate the symmetrical coordinated-motion performance between two robotic arms. For this evaluation, the proposed device monitors the relative distance between the two robotic arms in real-time, which is used to evaluate the coordinated-motion errors with respect to accuracy, and repeatability between the two arms. The proposed metrology device is composed of two linear displacement sensors sliding on a linear rail, two ball-and-socket magnetic couplers for mounting to robotic arms, and a wireless communication module for data transmission. For validation, the proposed system monitored the two robotic arms programmed to simulate symmetrical coordinated motions.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"84 - 91"},"PeriodicalIF":0.9,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43325285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Virtual Measurement Method of the Transmission Error Based on Point Clouds of the Gear","authors":"Bo Yu, Han-Chuan Kou, Zhaoyao Shi, Yanqiang Sun","doi":"10.2478/msr-2022-0012","DOIUrl":"https://doi.org/10.2478/msr-2022-0012","url":null,"abstract":"Abstract As the most widely used gear measuring instrument, the gear measuring center can measure the individual deviations of a gear tooth flank other than the comprehensive deviations of the gear. However, gear transmission error is an important transmission performance indicator in the gear meshing process. It is an important trend of gear measuring to obtain the transmission error from individual deviations. In this study, a calculation method of gear transmission error is proposed based on the point clouds of the gear obtained by optical sensors. According to the gear meshing principle, a method is introduced to determine the contact status between the tooth flanks formed by the point clouds. According to this introduced method, the single tooth pair meshing process and the meshing process of multiple tooth pairs are analyzed to determine the gear transmission error curve. The comparison results of tooth contact analysis and gear measurement experiments verify the proposed virtual measurement method.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"92 - 99"},"PeriodicalIF":0.9,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43803386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Andris, T. Dermek, D. Gogola, J. Pribil, I. Frollo
{"title":"Analysis of NMR Signal for Static Magnetic Field Standard","authors":"P. Andris, T. Dermek, D. Gogola, J. Pribil, I. Frollo","doi":"10.2478/msr-2022-0010","DOIUrl":"https://doi.org/10.2478/msr-2022-0010","url":null,"abstract":"Abstract This article describes the analysis of the NMR (Nuclear Magnetic Resonance) stabilizer signal. Magnetic field of the standard is created using an electromagnet. Sufficiently high stability of the magnetic field is achieved with the help of a stabilizer with an NMR probe. The NMR phenomenon makes possible very accurate measurements of the static magnetic field, but the resulting stability depends also on supporting electronics. An analysis has been done and tolerances of the measured quantities have been estimated. The calculated tolerances indicate the needed features of the material. First the probe excites the FID (Free Induction Decay) signal in the water sample and acquires the signal answer. It is Fourier transformed and its spectrum is investigated. The actual magnetic field corresponds to the strongest frequency sample. It is utilized for the magnetic field strength correction and stabilization of it. The article brings many equations for such calculation.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"80 - 83"},"PeriodicalIF":0.9,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48091156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Tian, Lingbin Shen, Yanhua Xue, Lin Chen, Lili Li, Ping Chen, Jinshou Tian, Wei Zhao
{"title":"Theoretical and Experimental Research on Spatial Performances of the Long-slit Streak Tube","authors":"L. Tian, Lingbin Shen, Yanhua Xue, Lin Chen, Lili Li, Ping Chen, Jinshou Tian, Wei Zhao","doi":"10.2478/msr-2022-0007","DOIUrl":"https://doi.org/10.2478/msr-2022-0007","url":null,"abstract":"Abstract The streak tubes are widely used in National Ignition Facility (NIF), Inertial Confinement Fusion (ICF), and streak tube imaging lidar (STIL) as radiation or imaging detectors. The spatial resolution and effective photocathode area of the streak tube are strongly dependent on its operating and geometry parameters (electron optical structure and applied voltage). Studies about this dependence do not cover the full range of the parameters. In this paper, 3-D models are developed in Computer Simulation Technology Particle Studio (CST-PS) to comprehensively calculate the spatial resolution for various parameters. Monte Carlo Sampling method (M-C method) and spatial modulation transfer function method (SMTF) are employed in our simulation. Simulated results of the optimized spatial resolution are validated by the experimental data. Finally, the radii of the photocathode (Rc) and phosphor screen (Rs) are optimized. Geometry parameters of Rc=60 mm and Rs=80 mm are proposed to optimize the streak tube performances. Simulation and experimental results show that the spatial resolution and effective photocathode area of this streak tube are expected to reach 16 lp/mm and 30 mm-length while the voltage between cathode and grid (Ucg) is 150 V.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"58 - 64"},"PeriodicalIF":0.9,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48732426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studying the Thermal Influence on the Vibration of Rotating Blades","authors":"A. F. Abbas, Adawiya Ali Hamzah","doi":"10.2478/msr-2022-0008","DOIUrl":"https://doi.org/10.2478/msr-2022-0008","url":null,"abstract":"Abstract Computing the vibrating characteristics of any machine or structure is a necessary process that should be performed by the mechanical engineers that work in engineering design field to avoid the collapse under different kinds of applied loads. One of these kinds of structures are the rotating blades, whereas this part is considered as an essential element in many rotating systems that are used in different fields of engineering, e.g., turbomachinery, turbofan, helicopters, etc. One of the biggest disadvantages that is realized in rotating blades is failure due to vibrations and unbalance. It is possible that vibrations significantly reduce the performance of rotating blades compared to standard design conditions. If these rotating blades continue to operate under these circumstances for sufficient time, then the status of these systems will be unstable. Finally, this will lead to collapse of the rotating blades. In this work, a new code was created from scratch, based on the finite element method, to determine the vibrational characteristics of the rotating blades, taking into consideration the effect of rotating speed and temperatures. The compound influence of thermal gradients and rotating speed on the vibrational response (frequencies) for different configurations of blade was studied deeply.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"65 - 72"},"PeriodicalIF":0.9,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42429947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Man-lu Liu, R. Lin, Jianliang Huo, Liguo Tan, Qing Ling, E. Zybin
{"title":"Design of Distributed Fusion Predictor and Filter without Feedback for Nonlinear System with Correlated Noises and Random Parameter Matrices","authors":"Man-lu Liu, R. Lin, Jianliang Huo, Liguo Tan, Qing Ling, E. Zybin","doi":"10.2478/msr-2022-0003","DOIUrl":"https://doi.org/10.2478/msr-2022-0003","url":null,"abstract":"Abstract This work presents distributed predictor and filter without feedback for nonlinear stochastic uncertain system with correlated noises. Firstly, for the problem that the process noise and measurement noise are correlated, the two-step prediction theorem based on projection theorem is used to replace the one-step prediction theorem, and the two-step prediction value of a single sensor is obtained. Secondly, the two-step prediction value of each sensor state is used as the measurement information to modify the distributed fusion predictor to obtain the distributed fusion prediction value. Then, according to the projection theorem, the prediction value of distributed fusion is used as measurement information to modify the filtering value of distributed fusion. Finally, the Cubature Kalman filter (CKF) algorithm is used to implement the algorithm proposed in this paper. By comparison with existing methods, the algorithm proposed in this paper solves the problem that existing methods cannot handle state estimation and prediction problems for nonlinear multi-sensor stochastic uncertain systems with correlated noises.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"17 - 31"},"PeriodicalIF":0.9,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44516586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vectorcardiographic Ventricular Gradient with Constituents, and Myocardial Action Potential Parameter Distribution","authors":"E. Aidu, V. Trunov","doi":"10.2478/msr-2022-0005","DOIUrl":"https://doi.org/10.2478/msr-2022-0005","url":null,"abstract":"Abstract Theoretical grounds of integral vectors of ventricular depolarization and repolarization and their sum, i.e., the spatial ventricular gradient, have been studied. A systematic description and biophysical interpretation of these parameters are presented based on the distribution of cardiomyocyte action potential parameters in the inhomogeneous bidomain model of the myocardium. Recent medical studies have shown high efficiency and predictive value of the ventricular gradient, its constituents and related parameters, such as the angle between the con-stituents, the acceleration of repolarization, etc. Simple examples for a myocardial strip clarify the relationship between the action potential parameters and the resulting ventricular gradient. An explanation with graphic illustration is given for the very informative decartogram of repolarization acceleration. The results obtained here are useful in the modeling of vectorcardiograms for various pathological conditions of the heart ventricles and for various characteristics of the cardiomyocyte action potential, which determine its shape.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"44 - 49"},"PeriodicalIF":0.9,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43437378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}