Man-lu Liu, R. Lin, Jianliang Huo, Liguo Tan, Qing Ling, E. Zybin
{"title":"具有相关噪声和随机参数矩阵的非线性系统的无反馈分布式融合预测器和滤波器设计","authors":"Man-lu Liu, R. Lin, Jianliang Huo, Liguo Tan, Qing Ling, E. Zybin","doi":"10.2478/msr-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract This work presents distributed predictor and filter without feedback for nonlinear stochastic uncertain system with correlated noises. Firstly, for the problem that the process noise and measurement noise are correlated, the two-step prediction theorem based on projection theorem is used to replace the one-step prediction theorem, and the two-step prediction value of a single sensor is obtained. Secondly, the two-step prediction value of each sensor state is used as the measurement information to modify the distributed fusion predictor to obtain the distributed fusion prediction value. Then, according to the projection theorem, the prediction value of distributed fusion is used as measurement information to modify the filtering value of distributed fusion. Finally, the Cubature Kalman filter (CKF) algorithm is used to implement the algorithm proposed in this paper. By comparison with existing methods, the algorithm proposed in this paper solves the problem that existing methods cannot handle state estimation and prediction problems for nonlinear multi-sensor stochastic uncertain systems with correlated noises.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"17 - 31"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Distributed Fusion Predictor and Filter without Feedback for Nonlinear System with Correlated Noises and Random Parameter Matrices\",\"authors\":\"Man-lu Liu, R. Lin, Jianliang Huo, Liguo Tan, Qing Ling, E. Zybin\",\"doi\":\"10.2478/msr-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work presents distributed predictor and filter without feedback for nonlinear stochastic uncertain system with correlated noises. Firstly, for the problem that the process noise and measurement noise are correlated, the two-step prediction theorem based on projection theorem is used to replace the one-step prediction theorem, and the two-step prediction value of a single sensor is obtained. Secondly, the two-step prediction value of each sensor state is used as the measurement information to modify the distributed fusion predictor to obtain the distributed fusion prediction value. Then, according to the projection theorem, the prediction value of distributed fusion is used as measurement information to modify the filtering value of distributed fusion. Finally, the Cubature Kalman filter (CKF) algorithm is used to implement the algorithm proposed in this paper. By comparison with existing methods, the algorithm proposed in this paper solves the problem that existing methods cannot handle state estimation and prediction problems for nonlinear multi-sensor stochastic uncertain systems with correlated noises.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"22 1\",\"pages\":\"17 - 31\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2022-0003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2022-0003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Design of Distributed Fusion Predictor and Filter without Feedback for Nonlinear System with Correlated Noises and Random Parameter Matrices
Abstract This work presents distributed predictor and filter without feedback for nonlinear stochastic uncertain system with correlated noises. Firstly, for the problem that the process noise and measurement noise are correlated, the two-step prediction theorem based on projection theorem is used to replace the one-step prediction theorem, and the two-step prediction value of a single sensor is obtained. Secondly, the two-step prediction value of each sensor state is used as the measurement information to modify the distributed fusion predictor to obtain the distributed fusion prediction value. Then, according to the projection theorem, the prediction value of distributed fusion is used as measurement information to modify the filtering value of distributed fusion. Finally, the Cubature Kalman filter (CKF) algorithm is used to implement the algorithm proposed in this paper. By comparison with existing methods, the algorithm proposed in this paper solves the problem that existing methods cannot handle state estimation and prediction problems for nonlinear multi-sensor stochastic uncertain systems with correlated noises.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science