P. Andris, T. Dermek, D. Gogola, J. Pribil, I. Frollo
{"title":"静态磁场标准核磁共振信号分析","authors":"P. Andris, T. Dermek, D. Gogola, J. Pribil, I. Frollo","doi":"10.2478/msr-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract This article describes the analysis of the NMR (Nuclear Magnetic Resonance) stabilizer signal. Magnetic field of the standard is created using an electromagnet. Sufficiently high stability of the magnetic field is achieved with the help of a stabilizer with an NMR probe. The NMR phenomenon makes possible very accurate measurements of the static magnetic field, but the resulting stability depends also on supporting electronics. An analysis has been done and tolerances of the measured quantities have been estimated. The calculated tolerances indicate the needed features of the material. First the probe excites the FID (Free Induction Decay) signal in the water sample and acquires the signal answer. It is Fourier transformed and its spectrum is investigated. The actual magnetic field corresponds to the strongest frequency sample. It is utilized for the magnetic field strength correction and stabilization of it. The article brings many equations for such calculation.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"80 - 83"},"PeriodicalIF":0.8000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of NMR Signal for Static Magnetic Field Standard\",\"authors\":\"P. Andris, T. Dermek, D. Gogola, J. Pribil, I. Frollo\",\"doi\":\"10.2478/msr-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article describes the analysis of the NMR (Nuclear Magnetic Resonance) stabilizer signal. Magnetic field of the standard is created using an electromagnet. Sufficiently high stability of the magnetic field is achieved with the help of a stabilizer with an NMR probe. The NMR phenomenon makes possible very accurate measurements of the static magnetic field, but the resulting stability depends also on supporting electronics. An analysis has been done and tolerances of the measured quantities have been estimated. The calculated tolerances indicate the needed features of the material. First the probe excites the FID (Free Induction Decay) signal in the water sample and acquires the signal answer. It is Fourier transformed and its spectrum is investigated. The actual magnetic field corresponds to the strongest frequency sample. It is utilized for the magnetic field strength correction and stabilization of it. The article brings many equations for such calculation.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"22 1\",\"pages\":\"80 - 83\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2022-0010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2022-0010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Analysis of NMR Signal for Static Magnetic Field Standard
Abstract This article describes the analysis of the NMR (Nuclear Magnetic Resonance) stabilizer signal. Magnetic field of the standard is created using an electromagnet. Sufficiently high stability of the magnetic field is achieved with the help of a stabilizer with an NMR probe. The NMR phenomenon makes possible very accurate measurements of the static magnetic field, but the resulting stability depends also on supporting electronics. An analysis has been done and tolerances of the measured quantities have been estimated. The calculated tolerances indicate the needed features of the material. First the probe excites the FID (Free Induction Decay) signal in the water sample and acquires the signal answer. It is Fourier transformed and its spectrum is investigated. The actual magnetic field corresponds to the strongest frequency sample. It is utilized for the magnetic field strength correction and stabilization of it. The article brings many equations for such calculation.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science