{"title":"两协同机器人手臂无线运动测量仪的设计与测试","authors":"Yongsik Kim, N. Dagalakis, J. Marvel, G. Cheok","doi":"10.2478/msr-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract Most existing robot performance evaluation methods focus on single robotic arms performing independent motion tasks. In this paper, a motion gauge is proposed to evaluate the symmetrical coordinated-motion performance between two robotic arms. For this evaluation, the proposed device monitors the relative distance between the two robotic arms in real-time, which is used to evaluate the coordinated-motion errors with respect to accuracy, and repeatability between the two arms. The proposed metrology device is composed of two linear displacement sensors sliding on a linear rail, two ball-and-socket magnetic couplers for mounting to robotic arms, and a wireless communication module for data transmission. For validation, the proposed system monitored the two robotic arms programmed to simulate symmetrical coordinated motions.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"84 - 91"},"PeriodicalIF":0.8000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Testing of Wireless Motion Gauges for Two Collaborative Robot Arms\",\"authors\":\"Yongsik Kim, N. Dagalakis, J. Marvel, G. Cheok\",\"doi\":\"10.2478/msr-2022-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Most existing robot performance evaluation methods focus on single robotic arms performing independent motion tasks. In this paper, a motion gauge is proposed to evaluate the symmetrical coordinated-motion performance between two robotic arms. For this evaluation, the proposed device monitors the relative distance between the two robotic arms in real-time, which is used to evaluate the coordinated-motion errors with respect to accuracy, and repeatability between the two arms. The proposed metrology device is composed of two linear displacement sensors sliding on a linear rail, two ball-and-socket magnetic couplers for mounting to robotic arms, and a wireless communication module for data transmission. For validation, the proposed system monitored the two robotic arms programmed to simulate symmetrical coordinated motions.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"22 1\",\"pages\":\"84 - 91\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2022-0011\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2022-0011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Design and Testing of Wireless Motion Gauges for Two Collaborative Robot Arms
Abstract Most existing robot performance evaluation methods focus on single robotic arms performing independent motion tasks. In this paper, a motion gauge is proposed to evaluate the symmetrical coordinated-motion performance between two robotic arms. For this evaluation, the proposed device monitors the relative distance between the two robotic arms in real-time, which is used to evaluate the coordinated-motion errors with respect to accuracy, and repeatability between the two arms. The proposed metrology device is composed of two linear displacement sensors sliding on a linear rail, two ball-and-socket magnetic couplers for mounting to robotic arms, and a wireless communication module for data transmission. For validation, the proposed system monitored the two robotic arms programmed to simulate symmetrical coordinated motions.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science