L. Tian, Lingbin Shen, Yanhua Xue, Lin Chen, Lili Li, Ping Chen, Jinshou Tian, Wei Zhao
{"title":"长缝条纹管空间性能的理论和实验研究","authors":"L. Tian, Lingbin Shen, Yanhua Xue, Lin Chen, Lili Li, Ping Chen, Jinshou Tian, Wei Zhao","doi":"10.2478/msr-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract The streak tubes are widely used in National Ignition Facility (NIF), Inertial Confinement Fusion (ICF), and streak tube imaging lidar (STIL) as radiation or imaging detectors. The spatial resolution and effective photocathode area of the streak tube are strongly dependent on its operating and geometry parameters (electron optical structure and applied voltage). Studies about this dependence do not cover the full range of the parameters. In this paper, 3-D models are developed in Computer Simulation Technology Particle Studio (CST-PS) to comprehensively calculate the spatial resolution for various parameters. Monte Carlo Sampling method (M-C method) and spatial modulation transfer function method (SMTF) are employed in our simulation. Simulated results of the optimized spatial resolution are validated by the experimental data. Finally, the radii of the photocathode (Rc) and phosphor screen (Rs) are optimized. Geometry parameters of Rc=60 mm and Rs=80 mm are proposed to optimize the streak tube performances. Simulation and experimental results show that the spatial resolution and effective photocathode area of this streak tube are expected to reach 16 lp/mm and 30 mm-length while the voltage between cathode and grid (Ucg) is 150 V.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"58 - 64"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical and Experimental Research on Spatial Performances of the Long-slit Streak Tube\",\"authors\":\"L. Tian, Lingbin Shen, Yanhua Xue, Lin Chen, Lili Li, Ping Chen, Jinshou Tian, Wei Zhao\",\"doi\":\"10.2478/msr-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The streak tubes are widely used in National Ignition Facility (NIF), Inertial Confinement Fusion (ICF), and streak tube imaging lidar (STIL) as radiation or imaging detectors. The spatial resolution and effective photocathode area of the streak tube are strongly dependent on its operating and geometry parameters (electron optical structure and applied voltage). Studies about this dependence do not cover the full range of the parameters. In this paper, 3-D models are developed in Computer Simulation Technology Particle Studio (CST-PS) to comprehensively calculate the spatial resolution for various parameters. Monte Carlo Sampling method (M-C method) and spatial modulation transfer function method (SMTF) are employed in our simulation. Simulated results of the optimized spatial resolution are validated by the experimental data. Finally, the radii of the photocathode (Rc) and phosphor screen (Rs) are optimized. Geometry parameters of Rc=60 mm and Rs=80 mm are proposed to optimize the streak tube performances. Simulation and experimental results show that the spatial resolution and effective photocathode area of this streak tube are expected to reach 16 lp/mm and 30 mm-length while the voltage between cathode and grid (Ucg) is 150 V.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"22 1\",\"pages\":\"58 - 64\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2022-0007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2022-0007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Theoretical and Experimental Research on Spatial Performances of the Long-slit Streak Tube
Abstract The streak tubes are widely used in National Ignition Facility (NIF), Inertial Confinement Fusion (ICF), and streak tube imaging lidar (STIL) as radiation or imaging detectors. The spatial resolution and effective photocathode area of the streak tube are strongly dependent on its operating and geometry parameters (electron optical structure and applied voltage). Studies about this dependence do not cover the full range of the parameters. In this paper, 3-D models are developed in Computer Simulation Technology Particle Studio (CST-PS) to comprehensively calculate the spatial resolution for various parameters. Monte Carlo Sampling method (M-C method) and spatial modulation transfer function method (SMTF) are employed in our simulation. Simulated results of the optimized spatial resolution are validated by the experimental data. Finally, the radii of the photocathode (Rc) and phosphor screen (Rs) are optimized. Geometry parameters of Rc=60 mm and Rs=80 mm are proposed to optimize the streak tube performances. Simulation and experimental results show that the spatial resolution and effective photocathode area of this streak tube are expected to reach 16 lp/mm and 30 mm-length while the voltage between cathode and grid (Ucg) is 150 V.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science