Medical & Biological Engineering & Computing最新文献

筛选
英文 中文
Integrating CT image reconstruction, segmentation, and large language models for enhanced diagnostic insight. 整合CT图像重建,分割和大型语言模型,以增强诊断洞察力。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-25 DOI: 10.1007/s11517-025-03446-3
Altamash Ahmad Abbasi, Ashfaq Hussain Farooqi
{"title":"Integrating CT image reconstruction, segmentation, and large language models for enhanced diagnostic insight.","authors":"Altamash Ahmad Abbasi, Ashfaq Hussain Farooqi","doi":"10.1007/s11517-025-03446-3","DOIUrl":"https://doi.org/10.1007/s11517-025-03446-3","url":null,"abstract":"<p><p>Deep learning has significantly advanced medical imaging, particularly computed tomography (CT), which is vital for diagnosing heart and cancer patients, evaluating treatments, and tracking disease progression. High-quality CT images enhance clinical decision-making, making image reconstruction a key research focus. This study develops a framework to improve CT image quality while minimizing reconstruction time. The proposed four-step medical image analysis framework includes reconstruction, preprocessing, segmentation, and image description. Initially, raw projection data undergoes reconstruction via a Radon transform to generate a sinogram, which is then used to construct a CT image of the pelvis. A convolutional neural network (CNN) ensures high-quality reconstruction. A bilateral filter reduces noise while preserving critical anatomical features. If required, a medical expert can review the image. The K-means clustering algorithm segments the preprocessed image, isolating the pelvis and removing irrelevant structures. Finally, the FuseCap model generates an automated textual description to assist radiologists. The framework's effectiveness is evaluated using peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), and structural similarity index measure (SSIM). The achieved values-PSNR 30.784, NMSE 0.032, and SSIM 0.877-demonstrate superior performance compared to existing methods. The proposed framework reconstructs high-quality CT images from raw projection data, integrating segmentation and automated descriptions to provide a decision-support tool for medical experts. By enhancing image clarity, segmenting outputs, and providing descriptive insights, this research aims to reduce the workload of frontline medical professionals and improve diagnostic efficiency.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145138954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pain assessment and determination methods with wearable sensors: a scoping review. 可穿戴传感器的疼痛评估和确定方法:范围回顾。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-24 DOI: 10.1007/s11517-025-03448-1
Beren Semiz, Özge Kartin Hancioglu, Remziye Semerci Şahin
{"title":"Pain assessment and determination methods with wearable sensors: a scoping review.","authors":"Beren Semiz, Özge Kartin Hancioglu, Remziye Semerci Şahin","doi":"10.1007/s11517-025-03448-1","DOIUrl":"https://doi.org/10.1007/s11517-025-03448-1","url":null,"abstract":"<p><p>There is no gold standard for objectively measuring pain; wearable devices cannot claim to measure pain itself, but may offer correlational insights through physiological signals. This scoping review synthesizes current evidence on pain-related assessment methods using wearable sensors across pediatric and adult populations. This review followed the PRISMA-ScR guidelines. A systematic literature search was conducted across PubMed, Cochrane Library, Scopus, Web of Science, CINAHL, and Ovid MEDLINE for studies published up to December 2024. A total of 24 studies met the inclusion criteria. The most used wearable devices included commercially available smartwatches, wristbands, and multisensor platforms. Physiological indicators associated with pain responses included heart rate, heart rate variability, electrocardiography, electrodermal activity, electromyography, surface electromyography, photoplethysmography, skin temperature, and electroencephalography, reflecting autonomic, muscular, and neural system activity. Wearable sensors represent a promising, non-invasive tool for capturing physiological pain-related responses, particularly in contexts where verbal self-report is not feasible. While these devices may support more responsive and continuous pain monitoring, they cannot replace self-report measures and should not be interpreted as providing objective pain measurements.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145132356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The biomedical engineer's pledge: overview and context. 生物医学工程师的承诺:概述和背景。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-24 DOI: 10.1007/s11517-025-03443-6
Antoni Ivorra, Txetxu Ausín, Laura Becerra-Fajardo, Antonio J Del Ama, Jesús Minguillón, Aracelys García-Moreno, Jordi Aguiló, Filipe Oliveira Barroso, Bart Bijnens, Oscar Camara, Sara Capdevila, Roger Castellanos Fernandez, Rafael V Davalos, Jean-Louis Divoux, Ahmed Eladly, Dario Farina, Carla García Hombravella, Raquel González López, Cesar A Gonzalez, Jordi Grífols, Felipe Maglietti, Shahid Malik, Elad Maor, Guillermo Marshall, Berta Mateu Yus, Lluis M Mir, Juan C Moreno, Xavier Navarro, Núria Noguera, Andrés Ozaita, Gemma Piella, José L Pons, Rita Quesada, Pilar Rivera-Gil, Boris Rubinsky, Aurelio Ruiz Garcia, Albert Ruiz-Vargas, Maria Sánchez Sánchez, Andreas Schneider-Ickert, Ting Shu, Rosa Villa Sanz, Bing Zhang, Gema Revuelta
{"title":"The biomedical engineer's pledge: overview and context.","authors":"Antoni Ivorra, Txetxu Ausín, Laura Becerra-Fajardo, Antonio J Del Ama, Jesús Minguillón, Aracelys García-Moreno, Jordi Aguiló, Filipe Oliveira Barroso, Bart Bijnens, Oscar Camara, Sara Capdevila, Roger Castellanos Fernandez, Rafael V Davalos, Jean-Louis Divoux, Ahmed Eladly, Dario Farina, Carla García Hombravella, Raquel González López, Cesar A Gonzalez, Jordi Grífols, Felipe Maglietti, Shahid Malik, Elad Maor, Guillermo Marshall, Berta Mateu Yus, Lluis M Mir, Juan C Moreno, Xavier Navarro, Núria Noguera, Andrés Ozaita, Gemma Piella, José L Pons, Rita Quesada, Pilar Rivera-Gil, Boris Rubinsky, Aurelio Ruiz Garcia, Albert Ruiz-Vargas, Maria Sánchez Sánchez, Andreas Schneider-Ickert, Ting Shu, Rosa Villa Sanz, Bing Zhang, Gema Revuelta","doi":"10.1007/s11517-025-03443-6","DOIUrl":"https://doi.org/10.1007/s11517-025-03443-6","url":null,"abstract":"<p><p>Although biomedical engineering (BME) is a profession with ethical responsibilities comparable to those in medicine, it has, until now, lacked a counterpart to the Hippocratic Oath. While professional societies have established codes of ethics for biomedical engineers, these documents lack the symbolic and ceremonial significance of an oath or pledge. By contrast, the recitation of the Hippocratic Oath, or its modern version, the \"Physician's Pledge,\" serves as a powerful rite of passage for medical students, fostering a strong sense of ethical duty at the start of their professional journey. However, the content of the Hippocratic Oath includes elements specific to clinical practice and is not directly applicable to biomedical engineering. To fill this gap, we have created a \"Biomedical Engineer's Pledge,\" comprising a preamble, ten promises, and a concluding statement, to inspire ethical awareness and establish a meaningful graduation tradition.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145139131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification. 基于脑肿瘤自动分割的EGFR突变分类增强ai决策支持系统。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-23 DOI: 10.1007/s11517-025-03447-2
Neslihan Gökmen, Ozan Kocadağlı, Serdar Cevik, Cagdas Aktan, Reza Eghbali, Chunlei Liu
{"title":"Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification.","authors":"Neslihan Gökmen, Ozan Kocadağlı, Serdar Cevik, Cagdas Aktan, Reza Eghbali, Chunlei Liu","doi":"10.1007/s11517-025-03447-2","DOIUrl":"https://doi.org/10.1007/s11517-025-03447-2","url":null,"abstract":"<p><p>Glioblastoma (GBM) carries poor prognosis; epidermal-growth-factor-receptor (EGFR) mutations further shorten survival. We propose a fully automated MRI-based decision-support system (DSS) that segments GBM and classifies EGFR status, reducing reliance on invasive biopsy. The segmentation module (UNet SI) fuses multiresolution, entropy-ranked shearlet features with CNN features, preserving fine detail through identity long-skip connections, to yield a Lightweight 1.9 M-parameter network. Tumour masks are fed to an Inception ResNet-v2 classifier via a 512-D bottleneck. The pipeline was five-fold cross-validated on 98 contrast-enhanced T1-weighted scans (Memorial Hospital; Ethics 24.12.2021/008) and externally validated on BraTS 2019. On the Memorial cohort UNet SI achieved Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm. EGFR classification reached Accuracy 0.960, Precision 1.000, Recall 0.871, AUC 0.94, surpassing published state-of-the-art results. Inference time is ≤ 0.18 s per slice on a 4 GB GPU. By combining shearlet-enhanced segmentation with streamlined classification, the DSS delivers superior EGFR prediction and is suitable for integration into routine clinical workflows.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145126357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multisensory integration task-based age group classification in early-mid adulthood. 基于多感觉统合任务的成年早期中期年龄组分类。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-22 DOI: 10.1007/s11517-025-03445-4
Prerna Singh, Eva Ghanshani, Pooja Mahajan, Lalan Kumar, Tapan Kumar Gandhi
{"title":"Multisensory integration task-based age group classification in early-mid adulthood.","authors":"Prerna Singh, Eva Ghanshani, Pooja Mahajan, Lalan Kumar, Tapan Kumar Gandhi","doi":"10.1007/s11517-025-03445-4","DOIUrl":"https://doi.org/10.1007/s11517-025-03445-4","url":null,"abstract":"<p><p>This preliminary study investigates the temporal dynamics of multisensory integration in early to mid-adulthood. Five regions of interest (ROIs) were identified, and integration times from 0 to 500 ms were analyzed. The impact of temporal asynchrony on audio-visual integration was assessed through behavioral analysis. Brain topography-based age-related differences in multisensory processing, particularly in the middle-aged group, were observed. Early integration consistently occurs between 200 and 325 ms across age groups. Audio stimuli integrate slower than visual stimuli, with AV integration times falling in between. Delayed integration is observed in audio-leading conditions (A50V), while faster integration occurs in visual-leading conditions (V50A). ERP-based channel selection significantly enhances age group classification accuracy. The random forest classifier achieves 98.3% accuracy using a small set of 13 selected channels during the A50V task. This optimized channel selection improves the ergonomics of EEG-based age group classification and simplifies the clustering process. The study demonstrates the effectiveness of using minimal electrodes and straightforward features for multisensory integration tasks in early to mid-adulthood.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145114907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D spine reconstruction from a single radiograph based on GANs. 基于gan的单张x线片三维脊柱重建。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-19 DOI: 10.1007/s11517-025-03441-8
Yan Peng, Junhua Zhang, Zetong Wang, Hongjian Li, Qiyang Wang
{"title":"3D spine reconstruction from a single radiograph based on GANs.","authors":"Yan Peng, Junhua Zhang, Zetong Wang, Hongjian Li, Qiyang Wang","doi":"10.1007/s11517-025-03441-8","DOIUrl":"https://doi.org/10.1007/s11517-025-03441-8","url":null,"abstract":"<p><p>The 3D spinal model plays a crucial role in the assessment and treatment decision of adolescent idiopathic scoliosis. The complex 3D shape of the spine cannot be fully captured by a single radiograph. A 3D spine reconstruction framework is developed in this study. First, a dual-training strategy for Generative Adversarial Networks (GANs) is proposed, which generates high-quality 3D spinal structures. Second, an adaptive scale-agnostic attention mechanism is integrated to establish cross-layer feature correlations and dynamically allocate weights. This mechanism ensures the preservation of the crucial information across all scales throughout the feature extraction process. The proposed method has been validated on 49 cases of scoliosis. Experiments show that surface overlap and volume Dice coefficient are 0.92 and 0.94, respectively. Compared with the state-of-the-art methods, the proposed method reduces the average surface distance by 0.16 mm. The results demonstrate its effectiveness in reconstructing the 3D spine from a single radiograph.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145087957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring universal segmentation models for automatic quantification of cardiac functional parameters from zebrafish heartbeat videos. 探索斑马鱼心跳视频中心功能参数自动量化的通用分割模型。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-16 DOI: 10.1007/s11517-025-03444-5
Yali Wang, Haochun Shi, Xingye Qiao, Fengyu Cong, Yanbin Zhao, Hongming Xu
{"title":"Exploring universal segmentation models for automatic quantification of cardiac functional parameters from zebrafish heartbeat videos.","authors":"Yali Wang, Haochun Shi, Xingye Qiao, Fengyu Cong, Yanbin Zhao, Hongming Xu","doi":"10.1007/s11517-025-03444-5","DOIUrl":"https://doi.org/10.1007/s11517-025-03444-5","url":null,"abstract":"<p><p>Quantifying cardiac functional parameters is crucial for assessing the toxicity of environmental chemicals on the cardiovascular system. Current methodologies for evaluating zebrafish cardiac function largely rely on tedious manual annotations and inaccurate semi-automatic or automatic measurements, hindering accurate and comprehensive functional evaluation. In this paper, we propose a framework for automatically quantifying cardiac functional parameters from zebrafish heartbeat videos by exploring universal segmentation models. We benchmarked 20 state-of-the-art deep segmentation models for automated segmentation of zebrafish ventricles and pericardia. The best-performing model, Mask2Former, was selected to segment ventricles and pericardia from the heartbeat videos. Seven cardiac functional parameters for zebrafish embryos, including heart rate, stroke volume, cardiac output, maximum ventricular area, ejection fraction, diastole to systole ratio, and pericardial arc length, were then computed based on the quantification of ventricular changes and pericardial morphologies. Experiments on 178 zebrafish heartbeat videos reveal that the trained Mask2Former exhibited remarkably superior performance, attaining an IoU of 93.46 <math><mo>%</mo></math> and Dice of 96.58 <math><mo>%</mo></math> for ventricular segmentation, and an IoU of 83.31 <math><mo>%</mo></math> and Dice of 90.89 <math><mo>%</mo></math> for pericardial segmentation. Compared to manual measurements, the automatically quantified cardiac functional parameters consistently show high accuracy, with relative errors below 10.0 <math><mo>%</mo></math> . Our framework presents a novel, rapid, and reliable tool for evaluating the toxicity of environmental chemicals on the cardiovascular system.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145071018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinematic instrumental assessment quantifies compensatory strategies in post-stroke patients. 运动学仪器评估量化脑卒中后患者的代偿策略。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-15 DOI: 10.1007/s11517-025-03439-2
Alessandro Scano, Eleonora Guanziroli, Cristina Brambilla, Alessandro Specchia, Lorenzo Molinari Tosatti, Franco Molteni
{"title":"Kinematic instrumental assessment quantifies compensatory strategies in post-stroke patients.","authors":"Alessandro Scano, Eleonora Guanziroli, Cristina Brambilla, Alessandro Specchia, Lorenzo Molinari Tosatti, Franco Molteni","doi":"10.1007/s11517-025-03439-2","DOIUrl":"https://doi.org/10.1007/s11517-025-03439-2","url":null,"abstract":"<p><p>In clinical practice, the upper limb function of hemiplegic post-stroke patients is commonly evaluated using clinical tests and questionnaires. Performing a reliable investigation of compensatory strategies adopted for the upper limb movement may shed light on the basis of motor control and the mechanism of functional recovery. To quantitatively evaluate the compensatory strategies in post-stroke hemiplegic patients, we conducted an observational study in which 36 hemiplegic patients were enrolled and were stratified according to the Fugl-Meyer score. We assessed compensatory strategies in upper limb movements, specifically reaching (RCH) and hand-to-mouth (HTM) movements, using the Kinect V2 device. 11 severe, 8 severe-moderate, 9 moderate-mild, and 8 mild patients and 17 controls participated in the study. Our results showed that severe, severe-moderate, and moderate-mild patients can be discriminated from healthy participants in almost all parameters. In particular, patients showed a reduced ROM of the shoulder in RCH, higher shoulder and elbow vertical displacement, and lower wrist vertical displacement in HTM. Interestingly, compensatory parameters also discriminate mild patients from healthy controls, such as head frontal and vertical displacements. Our protocol works effectively and the instrumental assessment of compensatory strategies in post-stroke patients allows to discriminate different levels of impairments even with low-cost devices.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145066259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barracuda: a dynamic, Turing-complete GPU virtual machine for high-performance simulations. Barracuda:一个动态的,图灵完整的GPU虚拟机,用于高性能模拟。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-13 DOI: 10.1007/s11517-025-03438-3
Phillip Duncan-Gelder, Darin O'Keeffe, Philip J Bones, Steven Marsh
{"title":"Barracuda: a dynamic, Turing-complete GPU virtual machine for high-performance simulations.","authors":"Phillip Duncan-Gelder, Darin O'Keeffe, Philip J Bones, Steven Marsh","doi":"10.1007/s11517-025-03438-3","DOIUrl":"10.1007/s11517-025-03438-3","url":null,"abstract":"<p><p>Accurate simulation of dynamic biological phenomena, such as tissue response and disease progression, is crucial in biomedical research and diagnostics. Traditional GPU-based simulation frameworks, typically static CUDA<sup>®</sup> environments, struggle with dynamically evolving parameters, limiting flexibility and clinical applicability. We introduce Barracuda, an open-source, lightweight, header-only, Turing-complete virtual machine designed for seamless integration into GPU environments. Barracuda enables real-time parameter perturbations through an expressive instruction set and operations library, implemented in a compact C/CUDA library. A dedicated high-level programming language and Rust-based compiler enhance accessibility, allowing straightforward integration into biomedical simulation workflows. Benchmark validations, including Rule 110 cellular automaton and Mandelbrot computations, confirm Barracuda's versatility and computational completeness. In magnetic resonance imaging (MRI) simulations, Barracuda allows for the dynamic recalculation of critical parameters, such as <math><msub><mi>T</mi> <mn>1</mn></msub> </math> relaxation times and temperature-induced off-resonance frequencies. Although it introduces computational overhead compared to static kernels, Barracuda significantly improves simulation accuracy by enabling dynamic modeling of key biological processes. Barracuda's modular architecture supports incremental integration, providing valuable flexibility for biomedical research and rapid prototyping. Future developments aim to optimize performance and expand domain-specific instruction sets, reinforcing Barracuda's role in bridging static GPU programming and dynamic simulation requirements.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145056257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ERP-based cognitive load decoding in middle-aged adults: effects of Alzheimer's risk. 中年人基于erp的认知负荷解码:阿尔茨海默病风险的影响。
IF 2.6 4区 医学
Medical & Biological Engineering & Computing Pub Date : 2025-09-12 DOI: 10.1007/s11517-025-03424-9
Ziyang Li, Jianing Song, Hong Wang, Tan Li, Mohamed Amin Gouda, Jiale Gong
{"title":"ERP-based cognitive load decoding in middle-aged adults: effects of Alzheimer's risk.","authors":"Ziyang Li, Jianing Song, Hong Wang, Tan Li, Mohamed Amin Gouda, Jiale Gong","doi":"10.1007/s11517-025-03424-9","DOIUrl":"https://doi.org/10.1007/s11517-025-03424-9","url":null,"abstract":"<p><p>Middle-aged people generally experience greater work pressure but higher health risks. However, the existing EEG-based cognitive load monitoring research has paid less attention to this segment of the population. We investigated high temporal resolution decoding of cognitive load from EEG signals in middle-aged individuals during inhibition and updating tasks. In this paper, we employed publicly available EEG data from Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT) paradigms to examine variations in brain activation modes and cognitive load under low and high cognitive demands. This analysis was conducted using time courses of event-related potential (ERP) scalp maps. To validate the effect of the method, we conducted multivariate pattern recognition and statistics analysis. The point-by-point classification accuracy sequences obtained from decoding were assessed for significance above chance levels using one-tailed t-tests, with corrections for multiple comparisons made via the false discovery rate (FDR) method. After comparative analysis, we found that the decoder was more effective in categorizing different tasks, while the MSIT was better than STMT's in categorizing cognitive loads. In addition, we also analyzed the spatio-temporal properties of brain activation under different conditions, which is instrumental in developing more powerful classifiers. Additionally, group-level statistical comparisons were performed to explore how AD risk may influence cognitive load decodings. The study results show that this program is feasible and can be used in the future to monitor the workload of high-risk job operators in real time and longitudinal observation in medical diagnostics.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145042016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信