Ziyang Li, Jianing Song, Hong Wang, Tan Li, Mohamed Amin Gouda, Jiale Gong
{"title":"中年人基于erp的认知负荷解码:阿尔茨海默病风险的影响。","authors":"Ziyang Li, Jianing Song, Hong Wang, Tan Li, Mohamed Amin Gouda, Jiale Gong","doi":"10.1007/s11517-025-03424-9","DOIUrl":null,"url":null,"abstract":"<p><p>Middle-aged people generally experience greater work pressure but higher health risks. However, the existing EEG-based cognitive load monitoring research has paid less attention to this segment of the population. We investigated high temporal resolution decoding of cognitive load from EEG signals in middle-aged individuals during inhibition and updating tasks. In this paper, we employed publicly available EEG data from Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT) paradigms to examine variations in brain activation modes and cognitive load under low and high cognitive demands. This analysis was conducted using time courses of event-related potential (ERP) scalp maps. To validate the effect of the method, we conducted multivariate pattern recognition and statistics analysis. The point-by-point classification accuracy sequences obtained from decoding were assessed for significance above chance levels using one-tailed t-tests, with corrections for multiple comparisons made via the false discovery rate (FDR) method. After comparative analysis, we found that the decoder was more effective in categorizing different tasks, while the MSIT was better than STMT's in categorizing cognitive loads. In addition, we also analyzed the spatio-temporal properties of brain activation under different conditions, which is instrumental in developing more powerful classifiers. Additionally, group-level statistical comparisons were performed to explore how AD risk may influence cognitive load decodings. The study results show that this program is feasible and can be used in the future to monitor the workload of high-risk job operators in real time and longitudinal observation in medical diagnostics.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ERP-based cognitive load decoding in middle-aged adults: effects of Alzheimer's risk.\",\"authors\":\"Ziyang Li, Jianing Song, Hong Wang, Tan Li, Mohamed Amin Gouda, Jiale Gong\",\"doi\":\"10.1007/s11517-025-03424-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Middle-aged people generally experience greater work pressure but higher health risks. However, the existing EEG-based cognitive load monitoring research has paid less attention to this segment of the population. We investigated high temporal resolution decoding of cognitive load from EEG signals in middle-aged individuals during inhibition and updating tasks. In this paper, we employed publicly available EEG data from Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT) paradigms to examine variations in brain activation modes and cognitive load under low and high cognitive demands. This analysis was conducted using time courses of event-related potential (ERP) scalp maps. To validate the effect of the method, we conducted multivariate pattern recognition and statistics analysis. The point-by-point classification accuracy sequences obtained from decoding were assessed for significance above chance levels using one-tailed t-tests, with corrections for multiple comparisons made via the false discovery rate (FDR) method. After comparative analysis, we found that the decoder was more effective in categorizing different tasks, while the MSIT was better than STMT's in categorizing cognitive loads. In addition, we also analyzed the spatio-temporal properties of brain activation under different conditions, which is instrumental in developing more powerful classifiers. Additionally, group-level statistical comparisons were performed to explore how AD risk may influence cognitive load decodings. The study results show that this program is feasible and can be used in the future to monitor the workload of high-risk job operators in real time and longitudinal observation in medical diagnostics.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03424-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03424-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ERP-based cognitive load decoding in middle-aged adults: effects of Alzheimer's risk.
Middle-aged people generally experience greater work pressure but higher health risks. However, the existing EEG-based cognitive load monitoring research has paid less attention to this segment of the population. We investigated high temporal resolution decoding of cognitive load from EEG signals in middle-aged individuals during inhibition and updating tasks. In this paper, we employed publicly available EEG data from Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT) paradigms to examine variations in brain activation modes and cognitive load under low and high cognitive demands. This analysis was conducted using time courses of event-related potential (ERP) scalp maps. To validate the effect of the method, we conducted multivariate pattern recognition and statistics analysis. The point-by-point classification accuracy sequences obtained from decoding were assessed for significance above chance levels using one-tailed t-tests, with corrections for multiple comparisons made via the false discovery rate (FDR) method. After comparative analysis, we found that the decoder was more effective in categorizing different tasks, while the MSIT was better than STMT's in categorizing cognitive loads. In addition, we also analyzed the spatio-temporal properties of brain activation under different conditions, which is instrumental in developing more powerful classifiers. Additionally, group-level statistical comparisons were performed to explore how AD risk may influence cognitive load decodings. The study results show that this program is feasible and can be used in the future to monitor the workload of high-risk job operators in real time and longitudinal observation in medical diagnostics.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).