Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Neslihan Gökmen, Ozan Kocadağlı, Serdar Cevik, Cagdas Aktan, Reza Eghbali, Chunlei Liu
{"title":"Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification.","authors":"Neslihan Gökmen, Ozan Kocadağlı, Serdar Cevik, Cagdas Aktan, Reza Eghbali, Chunlei Liu","doi":"10.1007/s11517-025-03447-2","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) carries poor prognosis; epidermal-growth-factor-receptor (EGFR) mutations further shorten survival. We propose a fully automated MRI-based decision-support system (DSS) that segments GBM and classifies EGFR status, reducing reliance on invasive biopsy. The segmentation module (UNet SI) fuses multiresolution, entropy-ranked shearlet features with CNN features, preserving fine detail through identity long-skip connections, to yield a Lightweight 1.9 M-parameter network. Tumour masks are fed to an Inception ResNet-v2 classifier via a 512-D bottleneck. The pipeline was five-fold cross-validated on 98 contrast-enhanced T1-weighted scans (Memorial Hospital; Ethics 24.12.2021/008) and externally validated on BraTS 2019. On the Memorial cohort UNet SI achieved Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm. EGFR classification reached Accuracy 0.960, Precision 1.000, Recall 0.871, AUC 0.94, surpassing published state-of-the-art results. Inference time is ≤ 0.18 s per slice on a 4 GB GPU. By combining shearlet-enhanced segmentation with streamlined classification, the DSS delivers superior EGFR prediction and is suitable for integration into routine clinical workflows.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03447-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM) carries poor prognosis; epidermal-growth-factor-receptor (EGFR) mutations further shorten survival. We propose a fully automated MRI-based decision-support system (DSS) that segments GBM and classifies EGFR status, reducing reliance on invasive biopsy. The segmentation module (UNet SI) fuses multiresolution, entropy-ranked shearlet features with CNN features, preserving fine detail through identity long-skip connections, to yield a Lightweight 1.9 M-parameter network. Tumour masks are fed to an Inception ResNet-v2 classifier via a 512-D bottleneck. The pipeline was five-fold cross-validated on 98 contrast-enhanced T1-weighted scans (Memorial Hospital; Ethics 24.12.2021/008) and externally validated on BraTS 2019. On the Memorial cohort UNet SI achieved Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm. EGFR classification reached Accuracy 0.960, Precision 1.000, Recall 0.871, AUC 0.94, surpassing published state-of-the-art results. Inference time is ≤ 0.18 s per slice on a 4 GB GPU. By combining shearlet-enhanced segmentation with streamlined classification, the DSS delivers superior EGFR prediction and is suitable for integration into routine clinical workflows.

基于脑肿瘤自动分割的EGFR突变分类增强ai决策支持系统。
胶质母细胞瘤(GBM)预后不良;表皮生长因子受体(EGFR)突变进一步缩短生存期。我们提出了一种全自动的基于mri的决策支持系统(DSS),该系统可以对GBM进行分类并对EGFR状态进行分类,从而减少对侵入性活检的依赖。该分割模块(UNet SI)融合了多分辨率、熵排序shearlet特征和CNN特征,通过身份长跳连接保留了精细的细节,得到了一个1.9 m参数的轻量级网络。肿瘤掩模通过512-D瓶颈被馈送到Inception ResNet-v2分类器。该管道在98次对比增强t1加权扫描上进行了五倍交叉验证(纪念医院;伦理24.12.2021/008),并在BraTS 2019上进行了外部验证。在Memorial队列中,UNet SI达到Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm。EGFR分类准确率达到0.960,精密度1.000,召回率0.871,AUC 0.94,超过了已发表的最新结果。在4gb GPU上,推理时间≤0.18 s /片。通过将shearlet增强分割与流线型分类相结合,DSS提供了卓越的EGFR预测,适合集成到常规临床工作流程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信