Exploring universal segmentation models for automatic quantification of cardiac functional parameters from zebrafish heartbeat videos.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yali Wang, Haochun Shi, Xingye Qiao, Fengyu Cong, Yanbin Zhao, Hongming Xu
{"title":"Exploring universal segmentation models for automatic quantification of cardiac functional parameters from zebrafish heartbeat videos.","authors":"Yali Wang, Haochun Shi, Xingye Qiao, Fengyu Cong, Yanbin Zhao, Hongming Xu","doi":"10.1007/s11517-025-03444-5","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying cardiac functional parameters is crucial for assessing the toxicity of environmental chemicals on the cardiovascular system. Current methodologies for evaluating zebrafish cardiac function largely rely on tedious manual annotations and inaccurate semi-automatic or automatic measurements, hindering accurate and comprehensive functional evaluation. In this paper, we propose a framework for automatically quantifying cardiac functional parameters from zebrafish heartbeat videos by exploring universal segmentation models. We benchmarked 20 state-of-the-art deep segmentation models for automated segmentation of zebrafish ventricles and pericardia. The best-performing model, Mask2Former, was selected to segment ventricles and pericardia from the heartbeat videos. Seven cardiac functional parameters for zebrafish embryos, including heart rate, stroke volume, cardiac output, maximum ventricular area, ejection fraction, diastole to systole ratio, and pericardial arc length, were then computed based on the quantification of ventricular changes and pericardial morphologies. Experiments on 178 zebrafish heartbeat videos reveal that the trained Mask2Former exhibited remarkably superior performance, attaining an IoU of 93.46 <math><mo>%</mo></math> and Dice of 96.58 <math><mo>%</mo></math> for ventricular segmentation, and an IoU of 83.31 <math><mo>%</mo></math> and Dice of 90.89 <math><mo>%</mo></math> for pericardial segmentation. Compared to manual measurements, the automatically quantified cardiac functional parameters consistently show high accuracy, with relative errors below 10.0 <math><mo>%</mo></math> . Our framework presents a novel, rapid, and reliable tool for evaluating the toxicity of environmental chemicals on the cardiovascular system.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03444-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying cardiac functional parameters is crucial for assessing the toxicity of environmental chemicals on the cardiovascular system. Current methodologies for evaluating zebrafish cardiac function largely rely on tedious manual annotations and inaccurate semi-automatic or automatic measurements, hindering accurate and comprehensive functional evaluation. In this paper, we propose a framework for automatically quantifying cardiac functional parameters from zebrafish heartbeat videos by exploring universal segmentation models. We benchmarked 20 state-of-the-art deep segmentation models for automated segmentation of zebrafish ventricles and pericardia. The best-performing model, Mask2Former, was selected to segment ventricles and pericardia from the heartbeat videos. Seven cardiac functional parameters for zebrafish embryos, including heart rate, stroke volume, cardiac output, maximum ventricular area, ejection fraction, diastole to systole ratio, and pericardial arc length, were then computed based on the quantification of ventricular changes and pericardial morphologies. Experiments on 178 zebrafish heartbeat videos reveal that the trained Mask2Former exhibited remarkably superior performance, attaining an IoU of 93.46 % and Dice of 96.58 % for ventricular segmentation, and an IoU of 83.31 % and Dice of 90.89 % for pericardial segmentation. Compared to manual measurements, the automatically quantified cardiac functional parameters consistently show high accuracy, with relative errors below 10.0 % . Our framework presents a novel, rapid, and reliable tool for evaluating the toxicity of environmental chemicals on the cardiovascular system.

探索斑马鱼心跳视频中心功能参数自动量化的通用分割模型。
心功能参数的量化对于评估环境化学物质对心血管系统的毒性至关重要。目前评估斑马鱼心功能的方法主要依赖于繁琐的手工标注和不准确的半自动或自动测量,阻碍了准确和全面的功能评估。在本文中,我们提出了一个框架,通过探索通用分割模型,从斑马鱼心跳视频中自动量化心脏功能参数。我们对20个最先进的深度分割模型进行了基准测试,用于斑马鱼心室和心包的自动分割。选择表现最好的模型Mask2Former从心跳视频中分割心室和心包。然后根据心室变化和心包形态学的量化计算斑马鱼胚胎的7项心功能参数,包括心率、搏量、心输出量、最大心室面积、射血分数、舒张收缩比和心包弧长。对178个斑马鱼心跳视频的实验表明,训练后的Mask2Former具有显著的优越性,对心室分割的IoU和Dice分别达到93.46%和96.58%,对心包分割的IoU和Dice分别达到83.31%和90.89%。与人工测量相比,自动量化的心功能参数始终显示出较高的准确性,相对误差低于10.0%。我们的框架提出了一种新的、快速的、可靠的工具来评估环境化学品对心血管系统的毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信