{"title":"Integrating CT image reconstruction, segmentation, and large language models for enhanced diagnostic insight.","authors":"Altamash Ahmad Abbasi, Ashfaq Hussain Farooqi","doi":"10.1007/s11517-025-03446-3","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has significantly advanced medical imaging, particularly computed tomography (CT), which is vital for diagnosing heart and cancer patients, evaluating treatments, and tracking disease progression. High-quality CT images enhance clinical decision-making, making image reconstruction a key research focus. This study develops a framework to improve CT image quality while minimizing reconstruction time. The proposed four-step medical image analysis framework includes reconstruction, preprocessing, segmentation, and image description. Initially, raw projection data undergoes reconstruction via a Radon transform to generate a sinogram, which is then used to construct a CT image of the pelvis. A convolutional neural network (CNN) ensures high-quality reconstruction. A bilateral filter reduces noise while preserving critical anatomical features. If required, a medical expert can review the image. The K-means clustering algorithm segments the preprocessed image, isolating the pelvis and removing irrelevant structures. Finally, the FuseCap model generates an automated textual description to assist radiologists. The framework's effectiveness is evaluated using peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), and structural similarity index measure (SSIM). The achieved values-PSNR 30.784, NMSE 0.032, and SSIM 0.877-demonstrate superior performance compared to existing methods. The proposed framework reconstructs high-quality CT images from raw projection data, integrating segmentation and automated descriptions to provide a decision-support tool for medical experts. By enhancing image clarity, segmenting outputs, and providing descriptive insights, this research aims to reduce the workload of frontline medical professionals and improve diagnostic efficiency.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03446-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has significantly advanced medical imaging, particularly computed tomography (CT), which is vital for diagnosing heart and cancer patients, evaluating treatments, and tracking disease progression. High-quality CT images enhance clinical decision-making, making image reconstruction a key research focus. This study develops a framework to improve CT image quality while minimizing reconstruction time. The proposed four-step medical image analysis framework includes reconstruction, preprocessing, segmentation, and image description. Initially, raw projection data undergoes reconstruction via a Radon transform to generate a sinogram, which is then used to construct a CT image of the pelvis. A convolutional neural network (CNN) ensures high-quality reconstruction. A bilateral filter reduces noise while preserving critical anatomical features. If required, a medical expert can review the image. The K-means clustering algorithm segments the preprocessed image, isolating the pelvis and removing irrelevant structures. Finally, the FuseCap model generates an automated textual description to assist radiologists. The framework's effectiveness is evaluated using peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), and structural similarity index measure (SSIM). The achieved values-PSNR 30.784, NMSE 0.032, and SSIM 0.877-demonstrate superior performance compared to existing methods. The proposed framework reconstructs high-quality CT images from raw projection data, integrating segmentation and automated descriptions to provide a decision-support tool for medical experts. By enhancing image clarity, segmenting outputs, and providing descriptive insights, this research aims to reduce the workload of frontline medical professionals and improve diagnostic efficiency.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).