{"title":"Kinematic instrumental assessment quantifies compensatory strategies in post-stroke patients.","authors":"Alessandro Scano, Eleonora Guanziroli, Cristina Brambilla, Alessandro Specchia, Lorenzo Molinari Tosatti, Franco Molteni","doi":"10.1007/s11517-025-03439-2","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical practice, the upper limb function of hemiplegic post-stroke patients is commonly evaluated using clinical tests and questionnaires. Performing a reliable investigation of compensatory strategies adopted for the upper limb movement may shed light on the basis of motor control and the mechanism of functional recovery. To quantitatively evaluate the compensatory strategies in post-stroke hemiplegic patients, we conducted an observational study in which 36 hemiplegic patients were enrolled and were stratified according to the Fugl-Meyer score. We assessed compensatory strategies in upper limb movements, specifically reaching (RCH) and hand-to-mouth (HTM) movements, using the Kinect V2 device. 11 severe, 8 severe-moderate, 9 moderate-mild, and 8 mild patients and 17 controls participated in the study. Our results showed that severe, severe-moderate, and moderate-mild patients can be discriminated from healthy participants in almost all parameters. In particular, patients showed a reduced ROM of the shoulder in RCH, higher shoulder and elbow vertical displacement, and lower wrist vertical displacement in HTM. Interestingly, compensatory parameters also discriminate mild patients from healthy controls, such as head frontal and vertical displacements. Our protocol works effectively and the instrumental assessment of compensatory strategies in post-stroke patients allows to discriminate different levels of impairments even with low-cost devices.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03439-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In clinical practice, the upper limb function of hemiplegic post-stroke patients is commonly evaluated using clinical tests and questionnaires. Performing a reliable investigation of compensatory strategies adopted for the upper limb movement may shed light on the basis of motor control and the mechanism of functional recovery. To quantitatively evaluate the compensatory strategies in post-stroke hemiplegic patients, we conducted an observational study in which 36 hemiplegic patients were enrolled and were stratified according to the Fugl-Meyer score. We assessed compensatory strategies in upper limb movements, specifically reaching (RCH) and hand-to-mouth (HTM) movements, using the Kinect V2 device. 11 severe, 8 severe-moderate, 9 moderate-mild, and 8 mild patients and 17 controls participated in the study. Our results showed that severe, severe-moderate, and moderate-mild patients can be discriminated from healthy participants in almost all parameters. In particular, patients showed a reduced ROM of the shoulder in RCH, higher shoulder and elbow vertical displacement, and lower wrist vertical displacement in HTM. Interestingly, compensatory parameters also discriminate mild patients from healthy controls, such as head frontal and vertical displacements. Our protocol works effectively and the instrumental assessment of compensatory strategies in post-stroke patients allows to discriminate different levels of impairments even with low-cost devices.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).