Microbiology-Sgm最新文献

筛选
英文 中文
Microbe Profile: Candida glabrata - a master of deception. 微生物简介:光滑念珠菌--欺骗大师
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001518
Maria Granada, Emily Cook, Gavin Sherlock, Frank Rosenzweig
{"title":"Microbe Profile: <i>Candida glabrata</i> - a master of deception.","authors":"Maria Granada, Emily Cook, Gavin Sherlock, Frank Rosenzweig","doi":"10.1099/mic.0.001518","DOIUrl":"10.1099/mic.0.001518","url":null,"abstract":"<p><p><i>Candida glabrata</i> is a fungal microbe associated with multiple vertebrate microbiomes and their terrestrial environments. In humans, the species has emerged as an opportunistic pathogen that now ranks as the second-leading cause of candidiasis in Europe and North America (Beardsley <i>et al</i>. <i>Med Mycol</i> 2024, 62). People at highest risk of infection include the elderly, immunocompromised individuals and/or long-term residents of hospital and assisted-living facilities. <i>C. glabrata</i> is intrinsically drug-resistant, metabolically versatile and able to avoid detection by the immune system. Analyses of its 12.3 Mb genome indicate a stable pangenome Marcet-Houben <i>et al</i>. (<i>BMC Biol</i> 2022, 20) and phylogenetic affinity with <i>Saccharomyces cerevisiae</i>. Recent phylogenetic analyses suggest reclassifying <i>C. glabrata</i> as <i>Nakaseomyces glabratus</i> Lakashima and Sugita (<i>Med Mycol J</i> 2022, 63: 119-132).</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoride and gallein regulate polyphosphate accumulation in dental caries-associated Lacticaseibacillus. 氟化物和加列林可调节龋齿相关乳酸杆菌中聚磷酸盐的积累。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001519
Subhrangshu Mandal, Beverly E Flood, Mark Lunzer, Dhiraj Kumar, Jake V Bailey
{"title":"Fluoride and gallein regulate polyphosphate accumulation in dental caries-associated <i>Lacticaseibacillus</i>.","authors":"Subhrangshu Mandal, Beverly E Flood, Mark Lunzer, Dhiraj Kumar, Jake V Bailey","doi":"10.1099/mic.0.001519","DOIUrl":"10.1099/mic.0.001519","url":null,"abstract":"<p><p>Inorganic polyphosphates (polyPs) are energy-storing biopolymers synthesized by all three domains of life. PolyP accumulation has been well studied with respect to its role in stress response, but its role in dental disease has received less attention. Dental decay can be promoted by changes in pH as well as the chemical activity of ions such as phosphate in oral fluids at the enamel interface. Previous work has shown that the drawdown of phosphate from biofilm fluids can alter the saturation state of oral fluids to thermodynamically favour mineral dissolution. The members of the Lactobacillaceae are known to accumulate polyP and play a role in early-stage and late-stage dental caries. In this study, we examined the effects of potential metabolic inhibitors on polyP accumulation in <i>Lacticaseibacillus rhamnosus</i>. We observed that two inhibitors of the enzyme responsible for polyP synthesis, gallein and fluoride, inhibited polyP accumulation in a balanced medium. However, fluoride and gallein treatments amended with either glucose or lactate were found to enhance polyP accumulation. These results illustrate the potential complexity of polyP metabolism in the oral environment.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. 对过量锰应激反应的研究凸显了锰输出器 Mnx 在蓝藻 Synechocystis sp. PCC 6803 中维持锰平衡的核心作用。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001515
Mara Reis, Sanja Zenker, Prisca Viehöver, Karsten Niehaus, Andrea Bräutigam, Marion Eisenhut
{"title":"Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803.","authors":"Mara Reis, Sanja Zenker, Prisca Viehöver, Karsten Niehaus, Andrea Bräutigam, Marion Eisenhut","doi":"10.1099/mic.0.001515","DOIUrl":"10.1099/mic.0.001515","url":null,"abstract":"<p><p>Cellular levels of the essential micronutrient manganese (Mn) need to be carefully balanced within narrow borders. In cyanobacteria, a sufficient Mn supply is critical for ensuring the function of the oxygen-evolving complex as the central part of the photosynthetic machinery. However, Mn accumulation is fatal for the cells. The reason for the observed cytotoxicity is unclear. To understand the causality behind Mn toxicity in cyanobacteria, we investigated the impact of excess Mn on physiology and global gene expression in the model organism <i>Synechocystis</i> sp. PCC 6803. We compared the response of the WT and the knock-out mutant in the <i>Mn</i> e<i>x</i>porter (Mnx), ∆<i>mnx</i>, which is disabled in the export of surplus Mn and thus functions as a model for toxic Mn overaccumulation. While growth and pigment accumulation in ∆<i>mnx</i> were severely impaired 24 h after the addition of tenfold Mn, the WT was not affected and thus mounted an adequate transcriptional response. RNA-seq data analysis revealed that the Mn stress transcriptomes partly resembled an iron limitation transcriptome. However, the expression of iron limitation signature genes <i>isiABDC</i> was not affected by the Mn treatment, indicating that Mn excess is not accompanied by iron limitation in <i>Synechocystis</i>. We suggest that the ferric uptake regulator, Fur, gets partially mismetallated under Mn excess conditions and thus interferes with an iron-dependent transcriptional response. To encounter mismetallation and other Mn-dependent problems on a protein level, the cells invest in transcripts of ribosomes, proteases and chaperones. In the case of the ∆<i>mnx</i> mutant, the consequences of the disability to export excess Mn from the cytosol manifest in additionally impaired energy metabolism and oxidative stress transcriptomes with a fatal outcome. This study emphasizes the central importance of Mn homeostasis and the transporter Mnx's role in restoring and holding it.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the fractal complexity of nutrient transport channels in Escherichia coli biofilms under varying cell shape and growth environment. 量化不同细胞形状和生长环境下大肠埃希菌生物膜中营养物质运输通道的分形复杂性。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001511
Beatrice Bottura, Liam Rooney, Morgan Feeney, Paul A Hoskisson, Gail McConnell
{"title":"Quantifying the fractal complexity of nutrient transport channels in <i>Escherichia coli</i> biofilms under varying cell shape and growth environment.","authors":"Beatrice Bottura, Liam Rooney, Morgan Feeney, Paul A Hoskisson, Gail McConnell","doi":"10.1099/mic.0.001511","DOIUrl":"10.1099/mic.0.001511","url":null,"abstract":"<p><p>Recent mesoscopic characterization of nutrient-transporting channels in <i>Escherichia coli</i> has allowed the identification and measurement of individual channels in whole mature colony biofilms. However, their complexity under different physiological and environmental conditions remains unknown. Analysis of confocal micrographs of colony biofilms formed by cell shape mutants of <i>E. coli</i> shows that channels have high fractal complexity, regardless of cell phenotype or growth medium. In particular, colony biofilms formed by the mutant strain Δ<i>ompR</i>, which has a wide-cell phenotype, have a higher fractal dimension when grown on rich medium than when grown on minimal medium, with channel complexity affected by glucose and agar concentrations in the medium. Osmotic stress leads to a dramatic reduction in the Δ<i>ompR</i> cell size but has a limited effect on channel morphology. This work shows that fractal image analysis is a powerful tool to quantify the effect of phenotypic mutations and growth environment on the morphological complexity of internal <i>E. coli</i> biofilm structures. If applied to a wider range of mutant strains, this approach could help elucidate the genetic determinants of channel formation in <i>E. coli</i> colony biofilms.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent responses of the native grassland soil microbiome to heavy grazing between spring and fall. 原生草地土壤微生物组对春秋两季重度放牧的不同反应。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001517
Newton Z Lupwayi, Xiying Hao, Monika A Gorzelak
{"title":"Divergent responses of the native grassland soil microbiome to heavy grazing between spring and fall.","authors":"Newton Z Lupwayi, Xiying Hao, Monika A Gorzelak","doi":"10.1099/mic.0.001517","DOIUrl":"10.1099/mic.0.001517","url":null,"abstract":"<p><p>Grasslands are estimated to cover about 40% of the earth's land area and are primarily used for grazing. Despite their importance globally, there is a paucity of information on long-term grazing effects on the soil microbiome. We used a 68-year-old grazing experiment to determine differences in the soil permanganate-oxidizable C (POXC), microbial biomass C (MBC), the soil prokaryotic (bacterial and archaeal) community composition and enzyme activities between no-grazing, light grazing and heavy grazing, i.e. 0, 1.2 and 2.4 animal unit months (AUM) ha<sup>-1</sup>. The grazing effects were determined in spring and fall grazing. Light grazing had little effect on soil MBC and the composition and diversity of prokaryotic communities in either grazing season, but the effects of heavy grazing depended on the grazing season. In spring, heavy grazing increased the relative abundances of copiotrophic phyla <i>Actinomycetota, Bacillota</i> and <i>Nitrososphaerota</i>, along with soil POXC contents but decreased those of oligotrophic phyla <i>Acidobacteriota, Verrucomicrobiota</i> and <i>Nitrospirota</i>. This difference in responses was not observed in fall, when grazing reduced soil POXC, MBC and the relative abundances of most phyla. The <i>β</i>-diversity analysis showed that the prokaryotic community structure under heavy grazing was different from those in the control and light grazing treatments, and <i>α</i>-diversity indices (except the Shannon index) were highest under heavy grazing in both grazing seasons. The activities of P-mobilizing and S-mobilizing soil enzymes decreased with increasing cattle stocking rate in both seasons, but the activities of the enzymes that mediate C and N cycling decreased only in the fall. The genus <i>RB41</i> (phylum <i>Acidobacteriota</i>) was one of two core bacterial genera, and its relative abundance was positively correlated with the activity of the S-mobilizing enzyme. Therefore, light grazing is recommended to reduce negative effects on the grassland soil microbiome and its activity, and the grazing season should be considered when evaluating such grazing effects.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PrfA regulon of Listeria monocytogenes is induced by growth in low-oxygen microaerophilic conditions. 单核细胞增生李斯特菌的 PrfA 调节子是在低氧微嗜水条件下生长诱导的。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001516
Lamis A Alnakhli, Marie Goldrick, Elizabeth Lord, Ian S Roberts
{"title":"The PrfA regulon of <i>Listeria monocytogenes</i> is induced by growth in low-oxygen microaerophilic conditions.","authors":"Lamis A Alnakhli, Marie Goldrick, Elizabeth Lord, Ian S Roberts","doi":"10.1099/mic.0.001516","DOIUrl":"10.1099/mic.0.001516","url":null,"abstract":"<p><p><i>Listeria monocytogenes</i> is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (P<i>hly</i>, P<i>actA</i>, P<i>/prfA</i> and P<i>/plcA</i>) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the P<i>hly</i>, P<i>actA</i> and P<i>/plcA</i> promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A <i>sigB</i> mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a <i>sigB</i> mutation increased expression from the P<i>hly</i> and P<i>actA</i> promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that <i>L. monocytogenes</i> PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. 哥斯达黎加岩溶洞穴微生物群落的多样性模式和抗生素活性。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001513
Felipe Vásquez-Castro, Daniela Wicki-Emmenegger, Paola Fuentes-Schweizer, Layla Nassar-Míguez, Diego Rojas-Gätjens, Keilor Rojas-Jimenez, Max Chavarría
{"title":"Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica.","authors":"Felipe Vásquez-Castro, Daniela Wicki-Emmenegger, Paola Fuentes-Schweizer, Layla Nassar-Míguez, Diego Rojas-Gätjens, Keilor Rojas-Jimenez, Max Chavarría","doi":"10.1099/mic.0.001513","DOIUrl":"10.1099/mic.0.001513","url":null,"abstract":"<p><p>The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family <i>Pseudomonadaceae</i> being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera <i>Lysobacter</i>, <i>Streptomyces</i>, <i>Pseudomonas</i>, <i>Brevundimonas</i> and <i>Bacillus</i>. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of Ruminococcus gnavus and Fusobacterium nucleatum while preserving Bifidobacteria, Lactobacillales in vitro, and inhibiting Lachnospiraceae in vivo. 作为益生元新概念的琼脂寡糖:选择性抑制反刍球菌和核酸镰刀菌,同时在体外保留双歧杆菌和乳酸杆菌,在体内抑制拉赫诺斯皮拉菌。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-11-01 DOI: 10.1099/mic.0.001510
Tadashi Fujii, Koji Karasawa, Hideaki Takahashi, Ikuya Shirai, Kohei Funasaka, Eizaburo Ohno, Yoshiki Hirooka, Takumi Tochio
{"title":"Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of <i>Ruminococcus gnavus</i> and <i>Fusobacterium nucleatum</i> while preserving Bifidobacteria, Lactobacillales <i>in vitro</i>, and inhibiting Lachnospiraceae <i>in vivo</i>.","authors":"Tadashi Fujii, Koji Karasawa, Hideaki Takahashi, Ikuya Shirai, Kohei Funasaka, Eizaburo Ohno, Yoshiki Hirooka, Takumi Tochio","doi":"10.1099/mic.0.001510","DOIUrl":"10.1099/mic.0.001510","url":null,"abstract":"<p><p>Recent studies have linked <i>Ruminococcus gnavus</i> to inflammatory bowel disease and <i>Fusobacterium nucleatum</i> to various cancers. Agarooligosaccharides (AOS), derived from the acid hydrolysis of agar, have shown significant inhibitory effects on the growth of <i>R. gnavus</i> and <i>F. nucleatum</i> at concentrations of 0.1 and 0.2%, respectively. RNA sequencing and quantitative reverse-transcription PCR analyses revealed the downregulation of fatty acid biosynthesis genes (<i>fab</i> genes) in these bacteria when exposed to 0.1% AOS. Furthermore, AOS treatment altered the fatty acid composition of <i>R. gnavus</i> cell membranes, increasing medium-chain saturated fatty acids (C8, C10) and C18 fatty acids while reducing long-chain fatty acids (C14, C16). In contrast, no significant growth inhibition was observed in several strains of Bifidobacteria and Lactobacillales at AOS concentrations of 0.2 and 2%, respectively. Co-culture experiments with <i>R. gnavus</i> and <i>Bifidobacterium longum</i> in 0.2% AOS resulted in <i>B. longum</i> dominating the population, constituting over 96% post-incubation. <i>In vivo</i> studies using mice demonstrated a significant reduction in the Lachnospiraceae family, to which <i>R. gnavus</i> belongs, following AOS administration. Quantitative PCR also showed lower levels of the <i>nan</i> gene, potentially associated with immune disorders, in the AOS group. These findings suggest that AOS may introduce a novel concept in prebiotics by selectively inhibiting potentially pathogenic bacteria while preserving beneficial bacteria such as Bifidobacteria and Lactobacillales.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection. 微生物衍生代谢物对肠道屏障完整性和免疫细胞感染反应的影响。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-10-01 DOI: 10.1099/mic.0.001504
Lauren Adams, Xiang Li, Richard Burchmore, Richard J A Goodwin, Daniel M Wall
{"title":"Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection.","authors":"Lauren Adams, Xiang Li, Richard Burchmore, Richard J A Goodwin, Daniel M Wall","doi":"10.1099/mic.0.001504","DOIUrl":"10.1099/mic.0.001504","url":null,"abstract":"<p><p>The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using <i>in vitro</i> models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen <i>Escherichia coli</i>, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of <i>E. coli</i> and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating trends in antibiotic resistance of Escherichia coli isolated from clinical urine specimens in the Orkney Islands. 调查从奥克尼群岛临床尿液标本中分离出的大肠埃希菌的抗生素耐药性趋势。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-10-01 DOI: 10.1099/mic.0.001514
Lily Corse, Allison Cartwright
{"title":"Investigating trends in antibiotic resistance of <i>Escherichia coli</i> isolated from clinical urine specimens in the Orkney Islands.","authors":"Lily Corse, Allison Cartwright","doi":"10.1099/mic.0.001514","DOIUrl":"10.1099/mic.0.001514","url":null,"abstract":"<p><p>Urinary tract infections (UTIs) are extremely common, affecting people of all ages and health statuses. Although UTIs do not usually cause severe illness, in some cases they can lead to more serious complications, especially if their initial treatment is ineffective due to antimicrobial resistance (AMR). AMR is an increasing issue, exacerbated by misdiagnosis and inappropriate prescribing of antibiotics, thus facilitating further resistance. The aim of this study was to investigate the rates of AMR in <i>Escherichia coli</i> isolated from clinical urine specimens tested at the Balfour Hospital, Orkney, and determine trends related to patient risk factors. Antibiotic susceptibilities were tested for 100 isolates of uropathogenic <i>E. coli</i> using the VITEK 2 Compact (bioMérieux), and data were analysed using percentage resistance rates. Resistance rates were compared by patient sex, age and source (hospital versus community). The findings showed higher AMR in males compared with females, particularly for trimethoprim (TMP), with 52% in males and only 12% in females. AMR tended to be higher in <i>E. coli</i> isolated from hospital inpatients than from community specimens, except for amoxicillin (AMX) and co-amoxiclav. Finally, the study found that AMR of <i>E. coli</i> isolates was greater in patients aged over 50 than 18-50 years old, particularly for AMX and TMP. The highest resistance rates across all patient demographics were for AMX, implying that the use of this antibiotic for the treatment of <i>E. coli</i> UTIs is not appropriate.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信