环状二gmp信号突变体在实验进化的铜绿假单胞菌生物膜中驱动生态演替和自生多样性。

IF 3.5 4区 生物学 Q3 MICROBIOLOGY
Gregory J Wickham, Chuanzhen Zhang, Ryan Sweet, Maria Solsona-Gaya, Mark A Webber
{"title":"环状二gmp信号突变体在实验进化的铜绿假单胞菌生物膜中驱动生态演替和自生多样性。","authors":"Gregory J Wickham, Chuanzhen Zhang, Ryan Sweet, Maria Solsona-Gaya, Mark A Webber","doi":"10.1099/mic.0.001605","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms represent a discrete form of microbial life which are physiologically distinct from free-living planktonic cells. The altered phenotypic manifestations of the biofilm may also elicit lifestyle-dependent adaptive responses to selective pressures. In this work, an experimental evolution model was used to study the adaptation to a biofilm lifestyle in <i>Pseudomonas aeruginosa</i> PA14. The serial passage of biofilms selected for biofilm hyperproduction in a stepwise fashion characterized by increased biomass production and phenotypic diversification was not associated with reduced susceptibility to antibiotics. Adaptation to a biofilm lifestyle selected for mutations causes constitutive increases of intracellular c-di-GMP concentrations via mutations in the phosphodiesterase <i>dipA</i>, the <i>yfiBNR</i> signalling complex and the bifunctional diguanylate cyclase/phosphodiesterase <i>morA</i>. Furthermore, selection for biofilm hyperproduction also gave rise to self-generated diversity by eliciting morphotypic diversification into complex community structures. Individual morphotypes were not associated with specific mutations and lineages dynamically switched between morphotypes despite possessing conserved mechanisms of biofilm hyperproduction. This work provides insights into the evolutionary importance of self-generated diversity to the biofilm and reveals the genetic control and phenotypic dynamics which contribute to the characteristically rugged fitness landscape associated with a sessile lifestyle.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cyclic-di-GMP signalling mutants drive ecological succession and self-generated diversity in experimentally evolved biofilms of <i>Pseudomonas aeruginosa</i>.\",\"authors\":\"Gregory J Wickham, Chuanzhen Zhang, Ryan Sweet, Maria Solsona-Gaya, Mark A Webber\",\"doi\":\"10.1099/mic.0.001605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilms represent a discrete form of microbial life which are physiologically distinct from free-living planktonic cells. The altered phenotypic manifestations of the biofilm may also elicit lifestyle-dependent adaptive responses to selective pressures. In this work, an experimental evolution model was used to study the adaptation to a biofilm lifestyle in <i>Pseudomonas aeruginosa</i> PA14. The serial passage of biofilms selected for biofilm hyperproduction in a stepwise fashion characterized by increased biomass production and phenotypic diversification was not associated with reduced susceptibility to antibiotics. Adaptation to a biofilm lifestyle selected for mutations causes constitutive increases of intracellular c-di-GMP concentrations via mutations in the phosphodiesterase <i>dipA</i>, the <i>yfiBNR</i> signalling complex and the bifunctional diguanylate cyclase/phosphodiesterase <i>morA</i>. Furthermore, selection for biofilm hyperproduction also gave rise to self-generated diversity by eliciting morphotypic diversification into complex community structures. Individual morphotypes were not associated with specific mutations and lineages dynamically switched between morphotypes despite possessing conserved mechanisms of biofilm hyperproduction. This work provides insights into the evolutionary importance of self-generated diversity to the biofilm and reveals the genetic control and phenotypic dynamics which contribute to the characteristically rugged fitness landscape associated with a sessile lifestyle.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"171 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001605\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001605","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物膜代表了微生物生命的一种独立形式,在生理上不同于自由生活的浮游细胞。生物膜改变的表型表现也可能引起依赖于生活方式的适应反应,以适应选择压力。本文采用实验进化模型研究了铜绿假单胞菌PA14对生物膜生活方式的适应。以增加生物量和表型多样化为特征的生物膜高产的连续传代与抗生素敏感性的降低无关。对突变选择的生物膜生活方式的适应,通过磷酸二酯酶dipA、yfiBNR信号复合物和双功能二胍酸环化酶/磷酸二酯酶morA的突变,导致细胞内c-二gmp浓度的组成性增加。此外,对生物膜高产的选择也通过诱导形态多样化进入复杂的群落结构而产生了自生多样性。个体形态型与特定突变无关,尽管具有生物膜高产的保守机制,但谱系在形态型之间动态切换。这项工作提供了对生物膜自我生成多样性的进化重要性的见解,并揭示了遗传控制和表型动力学,这些遗传控制和表型动力学有助于与固定式生活方式相关的特征崎岖的健身景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic-di-GMP signalling mutants drive ecological succession and self-generated diversity in experimentally evolved biofilms of Pseudomonas aeruginosa.

Biofilms represent a discrete form of microbial life which are physiologically distinct from free-living planktonic cells. The altered phenotypic manifestations of the biofilm may also elicit lifestyle-dependent adaptive responses to selective pressures. In this work, an experimental evolution model was used to study the adaptation to a biofilm lifestyle in Pseudomonas aeruginosa PA14. The serial passage of biofilms selected for biofilm hyperproduction in a stepwise fashion characterized by increased biomass production and phenotypic diversification was not associated with reduced susceptibility to antibiotics. Adaptation to a biofilm lifestyle selected for mutations causes constitutive increases of intracellular c-di-GMP concentrations via mutations in the phosphodiesterase dipA, the yfiBNR signalling complex and the bifunctional diguanylate cyclase/phosphodiesterase morA. Furthermore, selection for biofilm hyperproduction also gave rise to self-generated diversity by eliciting morphotypic diversification into complex community structures. Individual morphotypes were not associated with specific mutations and lineages dynamically switched between morphotypes despite possessing conserved mechanisms of biofilm hyperproduction. This work provides insights into the evolutionary importance of self-generated diversity to the biofilm and reveals the genetic control and phenotypic dynamics which contribute to the characteristically rugged fitness landscape associated with a sessile lifestyle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信