{"title":"粪肠球菌需要不饱和脂肪酸来克服环境饱和脂肪酸的毒性。","authors":"Qi Zou, Huijuan Dong, John E Cronan","doi":"10.1099/mic.0.001602","DOIUrl":null,"url":null,"abstract":"<p><p><i>Enterococcus faecalis</i> synthesizes phospholipids from either <i>de novo</i> synthesized or exogenous fatty acids. However, environmental saturated fatty acids are toxic to <i>E. faecalis</i>. The mechanism of toxicity is unknown. We report that saturated acids block growth by efficiently repressing transcription of the fatty acid biosynthesis (<i>fab</i>) genes, resulting in blockage of the synthesis of unsaturated fatty acyl chains. Saturated fatty acid toxicity depends on the chain length of the acyl chains. Growth was restored in the presence of toxic saturated fatty acids by the increased <i>de novo</i> unsaturated fatty acid synthesis, resulting from the deletion of the <i>fabT</i> gene, the repressor that regulates (<i>fab</i>) gene transcription. The addition of unsaturated fatty acids to the medium also restored growth in the presence of toxic saturated fatty acids. Overexpression of AcpA, the fatty acid synthesis acyl carrier protein, also gave increased <i>de novo</i> synthesis of unsaturated fatty acids and restored growth.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408189/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Enterococcus faecalis</i> requires unsaturated fatty acids to overcome toxicity of environmental saturated fatty acids.\",\"authors\":\"Qi Zou, Huijuan Dong, John E Cronan\",\"doi\":\"10.1099/mic.0.001602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Enterococcus faecalis</i> synthesizes phospholipids from either <i>de novo</i> synthesized or exogenous fatty acids. However, environmental saturated fatty acids are toxic to <i>E. faecalis</i>. The mechanism of toxicity is unknown. We report that saturated acids block growth by efficiently repressing transcription of the fatty acid biosynthesis (<i>fab</i>) genes, resulting in blockage of the synthesis of unsaturated fatty acyl chains. Saturated fatty acid toxicity depends on the chain length of the acyl chains. Growth was restored in the presence of toxic saturated fatty acids by the increased <i>de novo</i> unsaturated fatty acid synthesis, resulting from the deletion of the <i>fabT</i> gene, the repressor that regulates (<i>fab</i>) gene transcription. The addition of unsaturated fatty acids to the medium also restored growth in the presence of toxic saturated fatty acids. Overexpression of AcpA, the fatty acid synthesis acyl carrier protein, also gave increased <i>de novo</i> synthesis of unsaturated fatty acids and restored growth.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"171 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001602\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001602","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Enterococcus faecalis requires unsaturated fatty acids to overcome toxicity of environmental saturated fatty acids.
Enterococcus faecalis synthesizes phospholipids from either de novo synthesized or exogenous fatty acids. However, environmental saturated fatty acids are toxic to E. faecalis. The mechanism of toxicity is unknown. We report that saturated acids block growth by efficiently repressing transcription of the fatty acid biosynthesis (fab) genes, resulting in blockage of the synthesis of unsaturated fatty acyl chains. Saturated fatty acid toxicity depends on the chain length of the acyl chains. Growth was restored in the presence of toxic saturated fatty acids by the increased de novo unsaturated fatty acid synthesis, resulting from the deletion of the fabT gene, the repressor that regulates (fab) gene transcription. The addition of unsaturated fatty acids to the medium also restored growth in the presence of toxic saturated fatty acids. Overexpression of AcpA, the fatty acid synthesis acyl carrier protein, also gave increased de novo synthesis of unsaturated fatty acids and restored growth.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.