Jakob Gorodetsky, Nadia Monych, Raymond J Turner, Omid Haji-Ghassemi, Sean C Booth
{"title":"Role of AprA and pyocyanin from <i>Pseudomonas aeruginosa</i> on <i>Staphylococcus aureus</i> tolerance to silver.","authors":"Jakob Gorodetsky, Nadia Monych, Raymond J Turner, Omid Haji-Ghassemi, Sean C Booth","doi":"10.1099/mic.0.001596","DOIUrl":null,"url":null,"abstract":"<p><p>The opportunistic pathogens <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> are often found together causing persistent infections where they exhibit complex interactions that affect their virulence and resistance to treatment. We sought to clarify how interactions between these organisms affect their resistance to the antimicrobial metal silver (AgNO<sub>3</sub>). As previous work showed that cell-free supernatant from <i>P. aeruginosa</i> enhances the resistance of <i>S. aureus,</i> we aimed to identify the exact factor(s) responsible for this increase. Using molecular weight cutoff filters and proteomics, we identified the protein AprA and pyocyanin as the responsible factors. Transposon-mediated disruption of <i>aprA</i> led to the production of supernatant which could not enhance the silver tolerance of <i>S. aureus</i>. These findings suggest that the protease AprA from <i>P. aeruginosa</i> plays an important role in increasing the tolerance of <i>S. aureus</i> to AgNO<sub>3</sub> via in part by mediating the levels of pyocyanin which in turn reduces Ag<sup>2+</sup> to detoxify it.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001596","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The opportunistic pathogens Staphylococcus aureus and Pseudomonas aeruginosa are often found together causing persistent infections where they exhibit complex interactions that affect their virulence and resistance to treatment. We sought to clarify how interactions between these organisms affect their resistance to the antimicrobial metal silver (AgNO3). As previous work showed that cell-free supernatant from P. aeruginosa enhances the resistance of S. aureus, we aimed to identify the exact factor(s) responsible for this increase. Using molecular weight cutoff filters and proteomics, we identified the protein AprA and pyocyanin as the responsible factors. Transposon-mediated disruption of aprA led to the production of supernatant which could not enhance the silver tolerance of S. aureus. These findings suggest that the protease AprA from P. aeruginosa plays an important role in increasing the tolerance of S. aureus to AgNO3 via in part by mediating the levels of pyocyanin which in turn reduces Ag2+ to detoxify it.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.