{"title":"Human foot cutaneous receptors function: clinical findings and prospects of using medical devices to stimulate mechanoreceptors in neurorehabilitation.","authors":"Alexandra Riabova, Maria Bekreneva, Alina Saveko","doi":"10.1515/revneuro-2024-0082","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0082","url":null,"abstract":"<p><p>The effectiveness of the support stimulation of the mechanoreceptors of the feet has been first shown in space medicine. In space flight during support withdrawal with non-use of postural muscle, this method is a countermeasure against sensorimotor disorders. Later, it was applied in clinical practice as treatment of motor disorders after stroke, in Parkinson's disease, infantile cerebral palsy, neuropathies, and many others. The impact of such stimulation on motor control is due to spinal and supraspinal mechanisms, which are activated by creating an additional support afferent input through the plantar surface. Many studies confirmed the positive effect of support stimulation on motor control, but the protocols of such stimulation remain the subject of active discussion. This review includes (1) the features of sensitivity of the foot sole cutaneous afferents to the support mechanical stimuli, (2) data on spinal and supraspinal responses of the nervous system to support stimulation, and (3) the results of applying this approach in neurological practice via various techniques. Summarizing this information, the authors highlight the most promising ways and types of medical devices for foot support stimulation in neurology.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyu Zhu, Shen Sun, Lan Lin, Yutong Wu, Xiangge Ma
{"title":"Transformer-based approaches for neuroimaging: an in-depth review of their role in classification and regression tasks.","authors":"Xinyu Zhu, Shen Sun, Lan Lin, Yutong Wu, Xiangge Ma","doi":"10.1515/revneuro-2024-0088","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0088","url":null,"abstract":"<p><p>In the ever-evolving landscape of deep learning (DL), the transformer model emerges as a formidable neural network architecture, gaining significant traction in neuroimaging-based classification and regression tasks. This paper presents an extensive examination of transformer's application in neuroimaging, surveying recent literature to elucidate its current status and research advancement. Commencing with an exposition on the fundamental principles and structures of the transformer model and its variants, this review navigates through the methodologies and experimental findings pertaining to their utilization in neuroimage classification and regression tasks. We highlight the transformer model's prowess in neuroimaging, showcasing its exceptional performance in classification endeavors while also showcasing its burgeoning potential in regression tasks. Concluding with an assessment of prevailing challenges and future trajectories, this paper proffers insights into prospective research directions. By elucidating the current landscape and envisaging future trends, this review enhances comprehension of transformer's role in neuroimaging tasks, furnishing valuable guidance for further inquiry.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivan Montiel, Paola C Bello-Medina, Roberto A Prado-Alcalá, Gina L Quirarte, Luis A Verdín-Ruvalcaba, Tzitzi A Marín-Juárez, Andrea C Medina
{"title":"Involvement of kinases in memory consolidation of inhibitory avoidance training.","authors":"Ivan Montiel, Paola C Bello-Medina, Roberto A Prado-Alcalá, Gina L Quirarte, Luis A Verdín-Ruvalcaba, Tzitzi A Marín-Juárez, Andrea C Medina","doi":"10.1515/revneuro-2024-0093","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0093","url":null,"abstract":"<p><p>The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca<sup>2+</sup>/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda Gollo Bertollo, Maiqueli Eduarda Dama Mingoti, Zuleide Maria Ignácio
{"title":"Neurobiological mechanisms in the kynurenine pathway and major depressive disorder.","authors":"Amanda Gollo Bertollo, Maiqueli Eduarda Dama Mingoti, Zuleide Maria Ignácio","doi":"10.1515/revneuro-2024-0065","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0065","url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zainab B Mohammad, Samantha C Y Yudin, Benjamin J Goldberg, Kursti L Serra, Andis Klegeris
{"title":"Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication.","authors":"Zainab B Mohammad, Samantha C Y Yudin, Benjamin J Goldberg, Kursti L Serra, Andis Klegeris","doi":"10.1515/revneuro-2024-0081","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0081","url":null,"abstract":"<p><p>Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milos Kostic, Nikola Zivkovic, Ana Cvetanovic, Jelena Basic, Ivana Stojanovic
{"title":"Dissecting the immune response of CD4<sup>+</sup> T cells in Alzheimer's disease.","authors":"Milos Kostic, Nikola Zivkovic, Ana Cvetanovic, Jelena Basic, Ivana Stojanovic","doi":"10.1515/revneuro-2024-0090","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0090","url":null,"abstract":"<p><p>The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4<sup>+</sup> T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4<sup>+</sup> T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4<sup>+</sup> T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of data-driven thresholding methods using directed functional brain networks.","authors":"Thilaga Manickam, Vijayalakshmi Ramasamy, Nandagopal Doraisamy","doi":"10.1515/revneuro-2024-0020","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0020","url":null,"abstract":"<p><p>Over the past two centuries, intensive empirical research has been conducted on the human brain. As an electroencephalogram (EEG) records millisecond-to-millisecond changes in the electrical potentials of the brain, it has enormous potential for identifying useful information about neuronal transactions. The EEG data can be modelled as graphs by considering the electrode sites as nodes and the linear and nonlinear statistical dependencies among them as edges (with weights). The graph theoretical modelling of EEG data results in functional brain networks (FBNs), which are fully connected (complete) weighted undirected/directed networks. Since various brain regions are interconnected via sparse anatomical connections, the weak links can be filtered out from the fully connected networks using a process called thresholding. Multiple researchers in the past decades proposed many thresholding methods to gather more insights about the influential neuronal connections of FBNs. This paper reviews various thresholding methods used in the literature for FBN analysis. The analysis showed that data-driven methods are unbiased since no arbitrary user-specified threshold is required. The efficacy of four data-driven thresholding methods, namely minimum spanning tree (MST), minimum connected component (MCC), union of shortest path trees (USPT), and orthogonal minimum spanning tree (OMST), in characterizing cognitive behavior of the normal human brain is analysed using directed FBNs constructed from EEG data of different cognitive load states. The experimental results indicate that both MCC and OMST thresholding methods can detect cognitive load-induced changes in the directed functional brain networks.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Aziz Mohamed Yusoff, Siti Zulaikha Nashwa Mohd Khair
{"title":"Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases.","authors":"Abdul Aziz Mohamed Yusoff, Siti Zulaikha Nashwa Mohd Khair","doi":"10.1515/revneuro-2024-0080","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0080","url":null,"abstract":"<p><p>Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genghong Tu, Nan Jiang, Weizhong Chen, Lining Liu, Min Hu, Bagen Liao
{"title":"The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals.","authors":"Genghong Tu, Nan Jiang, Weizhong Chen, Lining Liu, Min Hu, Bagen Liao","doi":"10.1515/revneuro-2024-0058","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0058","url":null,"abstract":"<p><p>Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data.","authors":"Weihao Ye, Shang Xu, Ying Liu, Ziming Ye","doi":"10.1515/revneuro-2024-0039","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0039","url":null,"abstract":"<p><p>Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood-brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood-brain barrier have been recognized.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}