{"title":"Data fusion of medical imaging in neurological disorders.","authors":"Golrokh Mirzaei, Aaditya Gupta, Hojjat Adeli","doi":"10.1515/revneuro-2025-0062","DOIUrl":null,"url":null,"abstract":"<p><p>Medical imaging plays a crucial role in the accurate diagnosis and prognosis of various medical conditions, with each modality offering unique and complementary insights into the body's structure and function. However, no single imaging technique can capture the full spectrum of necessary information. Data fusion has emerged as a powerful tool to integrate information from different perspectives, including multiple modalities, views, temporal sequences, and spatial scales. By combining data, fusion techniques provide a more comprehensive understanding, significantly enhancing the precision and reliability of clinical analyses. This paper presents an overview of data fusion approaches - covering multi-view, multi-modal, and multi-scale strategies - across imaging modalities such as MRI, CT, PET, SPECT, EEG, and MEG, with a particular emphasis on applications in neurological disorders. Furthermore, we highlight the latest advancements in data fusion methods and key studies published since 2016, illustrating the progress and growing impact of this interdisciplinary field.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2025-0062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Medical imaging plays a crucial role in the accurate diagnosis and prognosis of various medical conditions, with each modality offering unique and complementary insights into the body's structure and function. However, no single imaging technique can capture the full spectrum of necessary information. Data fusion has emerged as a powerful tool to integrate information from different perspectives, including multiple modalities, views, temporal sequences, and spatial scales. By combining data, fusion techniques provide a more comprehensive understanding, significantly enhancing the precision and reliability of clinical analyses. This paper presents an overview of data fusion approaches - covering multi-view, multi-modal, and multi-scale strategies - across imaging modalities such as MRI, CT, PET, SPECT, EEG, and MEG, with a particular emphasis on applications in neurological disorders. Furthermore, we highlight the latest advancements in data fusion methods and key studies published since 2016, illustrating the progress and growing impact of this interdisciplinary field.
期刊介绍:
Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.