Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer's disease.

IF 3.4 3区 医学 Q2 NEUROSCIENCES
Rui Wang, Juan Li, Xiaochen Li, Yan Guo, Pei Chen, Tian Peng
{"title":"Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer's disease.","authors":"Rui Wang, Juan Li, Xiaochen Li, Yan Guo, Pei Chen, Tian Peng","doi":"10.1515/revneuro-2025-0013","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), a progressive neurodegenerative disorder, is marked by cognitive decline, neuroinflammation, and neuronal loss. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression, influencing key pathways involved in neuroinflammation and neurodegeneration in AD. This review delves into the multifaceted role of exercise in modulating miRNA expression and its interplay with the gut microbiome, proposing a comprehensive framework for neuroprotection in AD. By synthesizing current research, we elucidate how exercise-induced changes in miRNA profiles can mitigate inflammatory responses, promote neurogenesis, and reduce amyloid-beta and tau pathologies. Additionally, we explore the gut-brain axis, highlighting how exercise-driven alterations in gut microbiota composition can further influence miRNA expression, thereby enhancing cognitive function and reducing neuroinflammatory markers. This holistic approach underscores the potential of targeting exercise-regulated miRNAs and gut microbiome interactions as a novel, noninvasive therapeutic strategy to decelerate AD progression and improve quality of life for patients. This approach aims to decelerate disease progression and improve patient outcomes, offering a promising avenue for enhancing the effectiveness of AD management.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2025-0013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is marked by cognitive decline, neuroinflammation, and neuronal loss. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression, influencing key pathways involved in neuroinflammation and neurodegeneration in AD. This review delves into the multifaceted role of exercise in modulating miRNA expression and its interplay with the gut microbiome, proposing a comprehensive framework for neuroprotection in AD. By synthesizing current research, we elucidate how exercise-induced changes in miRNA profiles can mitigate inflammatory responses, promote neurogenesis, and reduce amyloid-beta and tau pathologies. Additionally, we explore the gut-brain axis, highlighting how exercise-driven alterations in gut microbiota composition can further influence miRNA expression, thereby enhancing cognitive function and reducing neuroinflammatory markers. This holistic approach underscores the potential of targeting exercise-regulated miRNAs and gut microbiome interactions as a novel, noninvasive therapeutic strategy to decelerate AD progression and improve quality of life for patients. This approach aims to decelerate disease progression and improve patient outcomes, offering a promising avenue for enhancing the effectiveness of AD management.

运动诱导的mirna和肠道微生物组的调节:阿尔茨海默病神经保护的整体方法
阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征是认知能力下降、神经炎症和神经元丧失。MicroRNAs (miRNAs)已成为基因表达的关键调控因子,影响AD患者神经炎症和神经退行性变的关键通路。这篇综述深入探讨了运动在调节miRNA表达及其与肠道微生物组的相互作用中的多方面作用,提出了AD神经保护的综合框架。通过综合目前的研究,我们阐明了运动诱导的miRNA谱变化如何减轻炎症反应,促进神经发生,减少淀粉样蛋白- β和tau病理。此外,我们探索了肠-脑轴,强调了运动驱动的肠道微生物群组成的改变如何进一步影响miRNA表达,从而增强认知功能并减少神经炎症标志物。这种整体方法强调了靶向运动调节的mirna和肠道微生物组相互作用的潜力,作为一种新的、无创的治疗策略,可以减缓AD的进展并改善患者的生活质量。该方法旨在减缓疾病进展并改善患者预后,为提高AD管理的有效性提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in the Neurosciences
Reviews in the Neurosciences 医学-神经科学
CiteScore
9.40
自引率
2.40%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信