Roger D Traub, Andreas Draguhn, Diego Contreras, Mark O Cunningham
{"title":"A proposed role for electrical coupling in the neocortical slow oscillation.","authors":"Roger D Traub, Andreas Draguhn, Diego Contreras, Mark O Cunningham","doi":"10.1515/revneuro-2025-0018","DOIUrl":null,"url":null,"abstract":"<p><p>We constructed a computational thalamocortical network model for study of the neocortical slow oscillation. It incorporated a number of neuronal types, both excitatory and inhibitory, each model neuron simulated as a multicompartment entity with numerous membrane conductances. As in previous experimental and modeling studies, simulated slow oscillations primarily depended on recurrently connected deep intrinsic bursting (IB) pyramidal cells, with NMDA receptors being critical as well as intrinsic membrane conductances (e.g. persistent Na<sup>+</sup>); and with repolarization to the Down state dependent on intrinsic (slow Ca<sup>2+</sup>-dependent K<sup>+</sup>) and synaptic (GABA<sub>B</sub> receptor mediated) conductances. Furthermore, however, we now can account for additional features of the slow oscillation: the frequent occurrence of spikelets, the presence of very fast ripple-like oscillations, and the transition to so-called fast runs (10 to ∼20 Hz bursty oscillations). These latter phenomena depended in our model on electrical coupling via gap junctions between pyramidal neurons. The importance of gap junctions is supported by previous experimental data on the ripple-blocking effect of halothane, as well as by data from the <i>in vitro</i> hippocampus.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2025-0018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We constructed a computational thalamocortical network model for study of the neocortical slow oscillation. It incorporated a number of neuronal types, both excitatory and inhibitory, each model neuron simulated as a multicompartment entity with numerous membrane conductances. As in previous experimental and modeling studies, simulated slow oscillations primarily depended on recurrently connected deep intrinsic bursting (IB) pyramidal cells, with NMDA receptors being critical as well as intrinsic membrane conductances (e.g. persistent Na+); and with repolarization to the Down state dependent on intrinsic (slow Ca2+-dependent K+) and synaptic (GABAB receptor mediated) conductances. Furthermore, however, we now can account for additional features of the slow oscillation: the frequent occurrence of spikelets, the presence of very fast ripple-like oscillations, and the transition to so-called fast runs (10 to ∼20 Hz bursty oscillations). These latter phenomena depended in our model on electrical coupling via gap junctions between pyramidal neurons. The importance of gap junctions is supported by previous experimental data on the ripple-blocking effect of halothane, as well as by data from the in vitro hippocampus.
期刊介绍:
Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.