A proposed role for electrical coupling in the neocortical slow oscillation.

IF 3.4 3区 医学 Q2 NEUROSCIENCES
Roger D Traub, Andreas Draguhn, Diego Contreras, Mark O Cunningham
{"title":"A proposed role for electrical coupling in the neocortical slow oscillation.","authors":"Roger D Traub, Andreas Draguhn, Diego Contreras, Mark O Cunningham","doi":"10.1515/revneuro-2025-0018","DOIUrl":null,"url":null,"abstract":"<p><p>We constructed a computational thalamocortical network model for study of the neocortical slow oscillation. It incorporated a number of neuronal types, both excitatory and inhibitory, each model neuron simulated as a multicompartment entity with numerous membrane conductances. As in previous experimental and modeling studies, simulated slow oscillations primarily depended on recurrently connected deep intrinsic bursting (IB) pyramidal cells, with NMDA receptors being critical as well as intrinsic membrane conductances (e.g. persistent Na<sup>+</sup>); and with repolarization to the Down state dependent on intrinsic (slow Ca<sup>2+</sup>-dependent K<sup>+</sup>) and synaptic (GABA<sub>B</sub> receptor mediated) conductances. Furthermore, however, we now can account for additional features of the slow oscillation: the frequent occurrence of spikelets, the presence of very fast ripple-like oscillations, and the transition to so-called fast runs (10 to ∼20 Hz bursty oscillations). These latter phenomena depended in our model on electrical coupling via gap junctions between pyramidal neurons. The importance of gap junctions is supported by previous experimental data on the ripple-blocking effect of halothane, as well as by data from the <i>in vitro</i> hippocampus.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2025-0018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We constructed a computational thalamocortical network model for study of the neocortical slow oscillation. It incorporated a number of neuronal types, both excitatory and inhibitory, each model neuron simulated as a multicompartment entity with numerous membrane conductances. As in previous experimental and modeling studies, simulated slow oscillations primarily depended on recurrently connected deep intrinsic bursting (IB) pyramidal cells, with NMDA receptors being critical as well as intrinsic membrane conductances (e.g. persistent Na+); and with repolarization to the Down state dependent on intrinsic (slow Ca2+-dependent K+) and synaptic (GABAB receptor mediated) conductances. Furthermore, however, we now can account for additional features of the slow oscillation: the frequent occurrence of spikelets, the presence of very fast ripple-like oscillations, and the transition to so-called fast runs (10 to ∼20 Hz bursty oscillations). These latter phenomena depended in our model on electrical coupling via gap junctions between pyramidal neurons. The importance of gap junctions is supported by previous experimental data on the ripple-blocking effect of halothane, as well as by data from the in vitro hippocampus.

电耦合在新皮层慢振荡中的作用。
我们构建了一个计算丘脑皮层网络模型来研究新皮层的慢振荡。它包含了许多神经元类型,包括兴奋性和抑制性,每个模型神经元被模拟为具有许多膜传导的多室实体。在之前的实验和建模研究中,模拟的慢振荡主要依赖于反复连接的深内禀破裂(IB)锥体细胞,其中NMDA受体和固有膜电导(例如持续Na+)至关重要;再极化到依赖于内在(缓慢的Ca2+依赖性K+)和突触(GABAB受体介导)传导的Down状态。此外,然而,我们现在可以解释慢振荡的其他特征:频繁出现的小穗,非常快速的波纹状振荡的存在,以及向所谓的快速运行的过渡(10到~ 20 Hz的突发振荡)。后一种现象在我们的模型中依赖于锥体神经元之间通过间隙连接的电耦合。先前关于氟烷波纹阻断效应的实验数据以及来自体外海马的数据支持了间隙连接的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in the Neurosciences
Reviews in the Neurosciences 医学-神经科学
CiteScore
9.40
自引率
2.40%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信