Reviews in the Neurosciences最新文献

筛选
英文 中文
Current status of Guillain-Barré syndrome (GBS) in China: a 10-year comprehensive overview. 格林-巴- <s:1>综合征(GBS)在中国的现状:10年综合综述
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-05-08 Print Date: 2023-12-15 DOI: 10.1515/revneuro-2023-0024
Yanna Song, Xiaoxiao Zheng, Yong Fang, Shan Liu, Kangding Liu, Jie Zhu, Xiujuan Wu
{"title":"Current status of Guillain-Barré syndrome (GBS) in China: a 10-year comprehensive overview.","authors":"Yanna Song, Xiaoxiao Zheng, Yong Fang, Shan Liu, Kangding Liu, Jie Zhu, Xiujuan Wu","doi":"10.1515/revneuro-2023-0024","DOIUrl":"10.1515/revneuro-2023-0024","url":null,"abstract":"<p><p>Guillain-Barré syndrome (GBS) is an acute inflammatory polyradiculoneuropathy; a disease involving the peripheral nervous system which is the most common cause of acute flaccid paralysis worldwide. So far, it is still lack of a comprehensive overview and understanding of the national epidemiological, clinical characteristics, and the risk factors of GBS in China, as well as differences between China and other countries and regions in these respects. With the global outbreak of the coronavirus disease 2019 (COVID-19), an epidemiological or phenotypic association between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and GBS has attracted great attention. In this review, we outlined the current clinical data of GBS in China by retrieving literature, extracting and synthesizing the data of GBS in China from 2010 to 2021. Besides, we compared the characteristics of epidemiology, preceding events and clinical profiles of GBS between China and other countries and regions. Furthermore, in addition to conventional intravenous immunoglobulin (IVIG) and plasma exchange (PE) therapy, the potential therapeutic effects with novel medications in GBS, such as complement inhibitors, etc., have become the research focus in treatments. We found that epidemiological and clinical findings of GBS in China are approximately consistent with those in the International GBS Outcome Study (IGOS) cohort. We provided an overall picture of the present clinical status of GBS in China and summarized the global research progress of GBS, aiming to further understand the characteristics of GBS and improve the future work of GBS worldwide, especially in countries with the middle and low incomes.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"869-897"},"PeriodicalIF":4.1,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9413455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases. Drp1-Fis1通路介导的线粒体分裂与神经退行性疾病。
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-04-25 DOI: 10.1515/revneuro-2022-0056
Wenjia Shi, Cheng Tan, Can Liu, Dan Chen
{"title":"Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases.","authors":"Wenjia Shi,&nbsp;Cheng Tan,&nbsp;Can Liu,&nbsp;Dan Chen","doi":"10.1515/revneuro-2022-0056","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0056","url":null,"abstract":"<p><p>In recent years, the role of mitochondrial dynamics in neurodegenerative diseases has becoming increasingly important. More and more evidences have shown that in pathological conditions, abnormal mitochondrial divisions, especially Drp1-Fis1-mediated divisions, play an important role in the occurrence and development of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, glaucoma, and other neurodegenerative diseases. This review highlights several new mechanisms of physiological fission of mitochondria and the difference/connection of physiological/pathological mitochondrial fission. In addition, we described the relationship between abnormal mitochondrial dynamics and neurodegenerative diseases in detail and emphatically summarized its detection indicators in basic experiments, trying to provide references for further mechanism exploration and therapeutic targets.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 3","pages":"275-294"},"PeriodicalIF":4.1,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9193958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease. 经颅直流电刺激参数对健康老年人和帕金森病患者上肢运动学习影响的meta分析综述
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-04-25 DOI: 10.1515/revneuro-2022-0073
Jessie Siew-Pin Leuk, Kai-En Yow, Clenyce Zi-Xin Tan, Ashlee M Hendy, Mika Kar-Wing Tan, Tommy Hock-Beng Ng, Wei-Peng Teo
{"title":"A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease.","authors":"Jessie Siew-Pin Leuk,&nbsp;Kai-En Yow,&nbsp;Clenyce Zi-Xin Tan,&nbsp;Ashlee M Hendy,&nbsp;Mika Kar-Wing Tan,&nbsp;Tommy Hock-Beng Ng,&nbsp;Wei-Peng Teo","doi":"10.1515/revneuro-2022-0073","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0073","url":null,"abstract":"<p><p>Current literature lacks consolidated evidence for the impact of stimulation parameters on the effects of transcranial direct current stimulation (tDCS) in enhancing upper limb motor learning. Hence, we aim to synthesise available methodologies and results to guide future research on the usage of tDCS on upper limb motor learning, specifically in older adults and Parkinson's disease (PD). Thirty-two studies (Healthy older adults, <i>N</i> = 526, <i>M</i> = 67.25, SD = 4.30 years; PD, <i>N</i> = 216, <i>M</i> = 66.62, SD = 6.25 years) were included in the meta-analysis. All included studies consisted of active and sham protocols. Random effect meta-analyses were conducted for (i) subjects (healthy older adults and PD); (ii) intensity (1.0, 1.5, 2 mA); (iii) electrode montage (unilateral anodal, bilateral anodal, unilateral cathodal); (iv) stimulation site (cerebellum, frontal, motor, premotor, SMA, somatosensory); (v) protocol (online, offline). Significant tDCS effect on motor learning was reported for both populations, intensity 1.0 and 2.0 mA, unilateral anodal and cathodal stimulation, stimulation site of the motor and premotor cortex, and both online and offline protocols. Regression showed no significant relationship between tDCS effects and density. The efficacy of tDCS is also not affected by the number of sessions. However, studies that reported only single session tDCS found significant negative association between duration with motor learning outcomes. Our findings suggest that different stimulation parameters enhanced upper limb motor learning in older adults and PD. Future research should combine tDCS with neuroimaging techniques to help with optimisation of the stimulation parameters, considering the type of task and population.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 3","pages":"325-348"},"PeriodicalIF":4.1,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9201544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Aging, testosterone, and neuroplasticity: friend or foe? 衰老、睾丸激素和神经可塑性:是敌是友?
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-04-25 DOI: 10.1515/revneuro-2022-0033
Kiarash Saleki, Mohammad Banazadeh, Amene Saghazadeh, Nima Rezaei
{"title":"Aging, testosterone, and neuroplasticity: friend or foe?","authors":"Kiarash Saleki,&nbsp;Mohammad Banazadeh,&nbsp;Amene Saghazadeh,&nbsp;Nima Rezaei","doi":"10.1515/revneuro-2022-0033","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0033","url":null,"abstract":"<p><p>Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 3","pages":"247-273"},"PeriodicalIF":4.1,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9254308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew? 通过神经回路操作来研究食欲的局限性:我们是否吃了超出我们能力范围的东西?
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-04-25 DOI: 10.1515/revneuro-2022-0072
Joshua Wang, Kate Beecher, Fatemeh Chehrehasa, Hayley Moody
{"title":"The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew?","authors":"Joshua Wang,&nbsp;Kate Beecher,&nbsp;Fatemeh Chehrehasa,&nbsp;Hayley Moody","doi":"10.1515/revneuro-2022-0072","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0072","url":null,"abstract":"<p><p>Disordered eating can underpin a number of debilitating and prevalent chronic diseases, such as obesity. Broader advances in psychopharmacology and biology have motivated some neuroscientists to address diet-induced obesity through reductionist, pre-clinical eating investigations on the rodent brain. Specifically, chemogenetic and optogenetic methods developed in the 21st century allow neuroscientists to perform <i>in vivo</i>, region-specific/projection-specific/promoter-specific circuit manipulations and immediately assess the impact of these manipulations on rodent feeding. These studies are able to rigorously conclude whether a specific neuronal population regulates feeding behaviour in the hope of eventually developing a mechanistic neuroanatomical map of appetite regulation. However, an artificially stimulated/inhibited rodent neuronal population that changes feeding behaviour does not necessarily represent a pharmacological target for treating eating disorders in humans. Chemogenetic/optogenetic findings must therefore be triangulated with the array of theories that contribute to our understanding of appetite. The objective of this review is to provide a wide-ranging discussion of the limitations of chemogenetic/optogenetic circuit manipulation experiments in rodents that are used to investigate appetite. Stepping into and outside of medical science epistemologies, this paper draws on philosophy of science, nutrition, addiction biology and neurophilosophy to prompt more integrative, transdisciplinary interpretations of chemogenetic/optogenetic appetite data. Through discussing the various technical and epistemological limitations of these data, we provide both an overview of chemogenetics and optogenetics accessible to non-neuroscientist obesity researchers, as well as a resource for neuroscientists to expand the number of lenses through which they interpret their circuit manipulation findings.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 3","pages":"295-311"},"PeriodicalIF":4.1,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9193953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review of transcranial direct current stimulation on eye movements and associated psychological function. 经颅直流电刺激对眼球运动及相关心理功能的系统回顾。
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-04-25 DOI: 10.1515/revneuro-2022-0082
Ashwin Subramaniam, Sicong Liu, Liam Lochhead, Lawrence Gregory Appelbaum
{"title":"A systematic review of transcranial direct current stimulation on eye movements and associated psychological function.","authors":"Ashwin Subramaniam,&nbsp;Sicong Liu,&nbsp;Liam Lochhead,&nbsp;Lawrence Gregory Appelbaum","doi":"10.1515/revneuro-2022-0082","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0082","url":null,"abstract":"<p><p>The last decades have seen a rise in the use of transcranial direct current stimulation (tDCS) approaches to modulate brain activity and associated behavior. Concurrently, eye tracking (ET) technology has improved to allow more precise quantitative measurement of gaze behavior, offering a window into the mechanisms of vision and cognition. When combined, tDCS and ET provide a powerful system to probe brain function and measure the impact on visual function, leading to an increasing number of studies that utilize these techniques together. The current pre-registered, systematic review seeks to describe the literature that integrates these approaches with the goal of changing brain activity with tDCS and measuring associated changes in eye movements with ET. The literature search identified 26 articles that combined ET and tDCS in a probe-and-measure model and are systematically reviewed here. All studies implemented controlled interventional designs to address topics related to oculomotor control, cognitive processing, emotion regulation, or cravings in healthy volunteers and patient populations. Across these studies, active stimulation typically led to changes in the number, duration, and timing of fixations compared to control stimulation. Notably, half the studies addressed emotion regulation, each showing hypothesized effects of tDCS on ET metrics, while tDCS targeting the frontal cortex was widely used and also generally produced expected modulation of ET. This review reveals promising evidence of the impact of tDCS on eye movements and associated psychological function, offering a framework for effective designs with recommendations for future studies.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 3","pages":"349-364"},"PeriodicalIF":4.1,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9554699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The role and mechanism of tryptophan - kynurenine metabolic pathway in depression. 色氨酸-犬尿氨酸代谢途径在抑郁症中的作用及机制。
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-04-25 DOI: 10.1515/revneuro-2022-0047
Xiaoli Gong, Rui Chang, Ju Zou, Sijie Tan, Zeyi Huang
{"title":"The role and mechanism of tryptophan - kynurenine metabolic pathway in depression.","authors":"Xiaoli Gong,&nbsp;Rui Chang,&nbsp;Ju Zou,&nbsp;Sijie Tan,&nbsp;Zeyi Huang","doi":"10.1515/revneuro-2022-0047","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0047","url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients' physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN's neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 3","pages":"313-324"},"PeriodicalIF":4.1,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9199825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Frontmatter 头版头条
3区 医学
Reviews in the Neurosciences Pub Date : 2023-03-29 DOI: 10.1515/revneuro-2023-frontmatter3
{"title":"Frontmatter","authors":"","doi":"10.1515/revneuro-2023-frontmatter3","DOIUrl":"https://doi.org/10.1515/revneuro-2023-frontmatter3","url":null,"abstract":"","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135469341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0. 心理图式2.0的脑神经机制中的高效、持续和广义学习。
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-03-27 Print Date: 2023-12-15 DOI: 10.1515/revneuro-2022-0137
Takefumi Ohki, Naoto Kunii, Zenas C Chao
{"title":"Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0.","authors":"Takefumi Ohki, Naoto Kunii, Zenas C Chao","doi":"10.1515/revneuro-2022-0137","DOIUrl":"10.1515/revneuro-2022-0137","url":null,"abstract":"<p><p>There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose \"Mental Schema 2.0,\" a new computational property underlying the brain's unique learning ability that can be implemented in ANNs.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"839-868"},"PeriodicalIF":4.1,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9221889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neural correlates of multisensory integration in the human brain: an ALE meta-analysis. 人脑多感觉整合的神经关联:一项ALE荟萃分析。
IF 4.1 3区 医学
Reviews in the Neurosciences Pub Date : 2023-02-23 DOI: 10.1515/revneuro-2022-0065
Sebastian Scheliga, Thilo Kellermann, Angelika Lampert, Roman Rolke, Marc Spehr, Ute Habel
{"title":"Neural correlates of multisensory integration in the human brain: an ALE meta-analysis.","authors":"Sebastian Scheliga,&nbsp;Thilo Kellermann,&nbsp;Angelika Lampert,&nbsp;Roman Rolke,&nbsp;Marc Spehr,&nbsp;Ute Habel","doi":"10.1515/revneuro-2022-0065","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0065","url":null,"abstract":"<p><p>Previous fMRI research identified superior temporal sulcus as central integration area for audiovisual stimuli. However, less is known about a general multisensory integration network across senses. Therefore, we conducted activation likelihood estimation meta-analysis with multiple sensory modalities to identify a common brain network. We included 49 studies covering all Aristotelian senses i.e., auditory, visual, tactile, gustatory, and olfactory stimuli. Analysis revealed significant activation in bilateral superior temporal gyrus, middle temporal gyrus, thalamus, right insula, and left inferior frontal gyrus. We assume these regions to be part of a general multisensory integration network comprising different functional roles. Here, thalamus operate as first subcortical relay projecting sensory information to higher cortical integration centers in superior temporal gyrus/sulcus while conflict-processing brain regions as insula and inferior frontal gyrus facilitate integration of incongruent information. We additionally performed meta-analytic connectivity modelling and found each brain region showed co-activations within the identified multisensory integration network. Therefore, by including multiple sensory modalities in our meta-analysis the results may provide evidence for a common brain network that supports different functional roles for multisensory integration.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 2","pages":"223-245"},"PeriodicalIF":4.1,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10831178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信