Lingyu Liu, Shen Sun, Wenjie Kang, Shuicai Wu, Lan Lin
{"title":"A review of neuroimaging-based data-driven approach for Alzheimer's disease heterogeneity analysis.","authors":"Lingyu Liu, Shen Sun, Wenjie Kang, Shuicai Wu, Lan Lin","doi":"10.1515/revneuro-2023-0033","DOIUrl":"10.1515/revneuro-2023-0033","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex form of dementia and due to its high phenotypic variability, its diagnosis and monitoring can be quite challenging. Biomarkers play a crucial role in AD diagnosis and monitoring, but interpreting these biomarkers can be problematic due to their spatial and temporal heterogeneity. Therefore, researchers are increasingly turning to imaging-based biomarkers that employ data-driven computational approaches to examine the heterogeneity of AD. In this comprehensive review article, we aim to provide health professionals with a comprehensive view of past applications of data-driven computational approaches in studying AD heterogeneity and planning future research directions. We first define and offer basic insights into different categories of heterogeneity analysis, including spatial heterogeneity, temporal heterogeneity, and spatial-temporal heterogeneity. Then, we scrutinize 22 articles relating to spatial heterogeneity, 14 articles relating to temporal heterogeneity, and five articles relating to spatial-temporal heterogeneity, highlighting the strengths and limitations of these strategies. Furthermore, we discuss the importance of understanding spatial heterogeneity in AD subtypes and their clinical manifestations, biomarkers for abnormal orderings and AD stages, the recent advancements in spatial-temporal heterogeneity analysis for AD, and the emerging role of omics data integration in advancing personalized diagnosis and treatment for AD patients. By emphasizing the significance of understanding AD heterogeneity, we hope to stimulate further research in this field to facilitate the development of personalized interventions for AD patients.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"121-139"},"PeriodicalIF":3.4,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Ya Rodnyy, Elena M Kondaurova, Anton S Tsybko, Nina K Popova, Dmitry A Kudlay, Vladimir S Naumenko
{"title":"The brain serotonin system in autism.","authors":"Alexander Ya Rodnyy, Elena M Kondaurova, Anton S Tsybko, Nina K Popova, Dmitry A Kudlay, Vladimir S Naumenko","doi":"10.1515/revneuro-2023-0055","DOIUrl":"10.1515/revneuro-2023-0055","url":null,"abstract":"<p><p>Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for <i>in vivo</i> regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"1-20"},"PeriodicalIF":3.4,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9749517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Corona-Trejo, María E Gonsebatt, Cristina Trejo-Solis, Victoria Campos-Peña, Laura Itzel Quintas-Granados, Edgar Yebrán Villegas-Vázquez, Octavio Daniel Reyes-Hernández, Vicente Jesús Hernández-Abad, Gabriela Figueroa-González, Daniela Silva-Adaya
{"title":"Transsulfuration pathway: a targeting neuromodulator in Parkinson's disease.","authors":"Andrea Corona-Trejo, María E Gonsebatt, Cristina Trejo-Solis, Victoria Campos-Peña, Laura Itzel Quintas-Granados, Edgar Yebrán Villegas-Vázquez, Octavio Daniel Reyes-Hernández, Vicente Jesús Hernández-Abad, Gabriela Figueroa-González, Daniela Silva-Adaya","doi":"10.1515/revneuro-2023-0039","DOIUrl":"10.1515/revneuro-2023-0039","url":null,"abstract":"<p><p>The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H<sub>2</sub>S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine β-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"915-932"},"PeriodicalIF":4.1,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9755171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontmatter","authors":"","doi":"10.1515/revneuro-2023-frontmatter5","DOIUrl":"https://doi.org/10.1515/revneuro-2023-frontmatter5","url":null,"abstract":"","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135409473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain circuit pathology in Down syndrome: from neurons to neural networks.","authors":"Renata Bartesaghi","doi":"10.1515/revneuro-2022-0067","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0067","url":null,"abstract":"<p><p>Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 4","pages":"365-423"},"PeriodicalIF":4.1,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9936117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitch R Paro, Arijit R Chakraborty, Sophia Angelo, Shyam Nambiar, Ketan R Bulsara, Rajkumar Verma
{"title":"Molecular mediators of angiogenesis and neurogenesis after ischemic stroke.","authors":"Mitch R Paro, Arijit R Chakraborty, Sophia Angelo, Shyam Nambiar, Ketan R Bulsara, Rajkumar Verma","doi":"10.1515/revneuro-2022-0049","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0049","url":null,"abstract":"<p><p>The mechanisms governing neurological and functional recovery after ischemic stroke are incompletely understood. Recent advances in knowledge of intrinsic repair processes of the CNS have so far translated into minimal improvement in outcomes for stroke victims. Better understanding of the processes underlying neurological recovery after stroke is necessary for development of novel therapeutic approaches. Angiogenesis and neurogenesis have emerged as central mechanisms of post-stroke recovery and potential targets for therapeutics. Frameworks have been developed for conceptualizing cerebral angiogenesis and neurogenesis at the tissue and cellular levels. These models highlight that angiogenesis and neurogenesis are linked to each other and to functional recovery. However, knowledge of the molecular framework linking angiogenesis and neurogenesis after stroke is limited. Studies of potential therapeutics typically focus on one mediator or pathway with minimal discussion of its role within these multifaceted biochemical processes. In this article, we briefly review the current understanding of the coupled processes of angiogenesis and neurogenesis after stroke. We then identify the molecular mediators and signaling pathways found in pre-clinical studies to upregulate both processes after stroke and contextualizes them within the current framework. This report thus contributes to a more-unified understanding of the molecular mediators governing angiogenesis and neurogenesis after stroke, which we hope will help guide the development of novel therapeutic approaches for stroke survivors.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 4","pages":"425-442"},"PeriodicalIF":4.1,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9952529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dysfunctional microglia and tau pathology in Alzheimer's disease.","authors":"Gunel Ayyubova","doi":"10.1515/revneuro-2022-0087","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0087","url":null,"abstract":"<p><p>Extensive human studies and animal models show that chronic immune system stimulation involving microglia, inflammasome, complement activation, synthesis of cytokines, and reactive oxygen species exacerbates neurodegeneration in Alzheimer's disease (AD) and other tauopathies. Abnormalities in tau, Aβ, and microglial activation are frequently observed in dementia patients and indicate that these elements may work in concert to cause cognitive impairment. Contradicting reports from postmortem studies demonstrating the presence of Aβ aggregates in the brains of cognitively healthy individuals, as well as other investigations, show that tau aggregation is more strongly associated with synapse loss, neurodegeneration, and cognitive decline than amyloid pathology. Tau association with microtubules' surface promotes their growth and maintains their assembly, dynamicity, and stability. In contrast, the reduced affinity of hyperphosphorylated and mislocalized tau to microtubules leads to axonal deficits and neurofibrillary tangles (NFTs). Loss of microglial neuroprotective and phagocytic functions, as indicated by the faulty clearance of amyloid plaques, as well as correlations between microglial activation and tau tangle spread, all demonstrate the critical involvement of malfunctioning microglia in driving tau propagation. This review discusses the recent reports on the contribution of microglial cells to the development and progression of tau pathology. The detailed study of pathogenic mechanisms involved in interactions between neuroinflammation and tau spread is critical in identifying the targets for efficacious treatment strategies in AD.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 4","pages":"443-458"},"PeriodicalIF":4.1,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9572275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kangzhe Xie, Hala El Khoury, John Mitrofanis, Paul J Austin
{"title":"A systematic review of the effect of photobiomodulation on the neuroinflammatory response in animal models of neurodegenerative diseases.","authors":"Kangzhe Xie, Hala El Khoury, John Mitrofanis, Paul J Austin","doi":"10.1515/revneuro-2022-0109","DOIUrl":"https://doi.org/10.1515/revneuro-2022-0109","url":null,"abstract":"<p><p>This systematic review examines the effect of photobiomodulation (PBM), the application of red to near infrared light on body tissues, on the neuroinflammatory response and oxidative stress in animal models of neurodegenerative diseases. The research question and search protocol were prospectively registered on the PROSPERO database. Neurodegenerative diseases are becoming ever more prevalent in the ageing populations across the Western world, with no disease-modifying or neuroprotective treatment options being available. Hence there is a real need for the development of effective treatment options for patients. Inflammatory responses and oxidative stress within the central nervous system have a strong correlation with neuronal cell death. PBM is a non-invasive therapeutic option that has shown efficacy and promising effects in animal models of neurodegenerative disease; many studies have reported neuroprotection and improved behavioural outcomes. To the best of our knowledge, there has been no previous study that has reviewed the anti-inflammatory and the antioxidant effect of PBM in the context of neurodegeneration. This review has examined this relationship in animal models of a range of neurodegenerative diseases. We found that PBM can effectively reduce glial activation, pro-inflammatory cytokine expression and oxidative stress, whilst increasing anti-inflammatory glial responses and cytokines, and antioxidant capacity. These positive outcomes accompanied the neuroprotection evident after PBM treatment. Our review provides further indication that PBM can be developed into an effective non-pharmacological intervention for neurodegenerative diseases.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"34 4","pages":"459-481"},"PeriodicalIF":4.1,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9578999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of pain modulation pathway and related brain regions in pain.","authors":"Dandan Yao, Yeru Chen, Gang Chen","doi":"10.1515/revneuro-2023-0037","DOIUrl":"10.1515/revneuro-2023-0037","url":null,"abstract":"<p><p>Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the \"pain matrix\", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"899-914"},"PeriodicalIF":4.1,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontmatter","authors":"","doi":"10.1515/revneuro-2023-frontmatter4","DOIUrl":"https://doi.org/10.1515/revneuro-2023-frontmatter4","url":null,"abstract":"","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135675763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}