{"title":"Evolving strategies in the diagnosis and treatment of HIV-associated neurocognitive disorders.","authors":"Chuanke Hou, Jingwei Wei, Hui Zhang, Hongjun Li","doi":"10.1515/revneuro-2025-0004","DOIUrl":"https://doi.org/10.1515/revneuro-2025-0004","url":null,"abstract":"<p><p>Despite significant progress in managing HIV infection, HIV - associated neurocognitive disorder (HAND) continues to be a concern even among HIV individuals with well - controlled infection. Current diagnostic strategies, primarily reliant on neuropsychological tests, neuroimaging, and biomarkers from blood and cerebrospinal fluid, alongside combination antiretroviral therapy, form the foundation of HAND management. However, these strategies often fail to identify early or mild HAND, particularly asymptomatic neurocognitive impairment, resulting in delayed diagnosis and intervention. Furthermore, the inability to perform in-depth molecular analyses and conduct longitudinal tracking limits therapeutic advancements. Emerging technologies - advanced neuroimaging, multi-omics, artificial intelligence, alongside simian immunodeficiency virus non-human primate models - are revolutionizing the field. These innovations offer unprecedented opportunities for deeper understanding of the disease mechanism, early detection, comprehensive monitoring, and personalized treatment strategies. Integrating these cutting-edge tools promises to reshape the landscape of HAND management, enhancing the quality of life for those living with HIV.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143558487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tool evolution as a prerequisite for consciousness.","authors":"Carsten Korth","doi":"10.1515/revneuro-2024-0166","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0166","url":null,"abstract":"<p><p>Within the concept of the extended mind, the active modification of external objects, externalizations, is seen as an auxiliary means to adapt to the environment. Toolmaking and use are advanced stages of externalizations that evolve. All past or present tools can, theoretically, be precisely assigned a location in an evolutionary tree with predecessors and progeny. Tools are reliably replicated, modified, and selected by their ability to facilitate human needs. Tool evolution, therefore, fulfills Darwinian criteria where the material tool is the phenotype and the instruction to build it is the code. The ostensive triangle consisting of a pointing individual, an observing individual, and a pointed-at object or tool is the germ cell of social transmission of instructions. Tool-building instructions ultimately can be reduced to distinct sequences of motor acts that can be recombined and are socially transmitted. When executed, they replicate tools for the reward of convenience or improved fitness. Tools elicit affordances relating to their use that synchronize different individuals' perceptions, result in psychological \"understanding,\" and thereby modify social networks. Massive tool fabrication as present today in the \"tool-sphere\" has, therefore, accelerated prosociality and over time led to the acquisition of an individual's third person perspective. The entangled biological evolution accelerated the ongoing cumulative cultural evolution by selecting traits facilitating social transmission. In this context, tool evolution and the corresponding acquired individual instructional content is a precondition to the emergence of higher cognition and \"consciousness.\" A neuroscience investigating externalizations as the starting point of this process is urgently needed.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of non-alcoholic fatty liver disease on cognition and brain changes: a comprehensive review.","authors":"Huijing He, Hongjian Gao, Yubo Zhang, Qi Wang, Zongyang Li, Shuicai Wu, Caiyun Wen","doi":"10.1515/revneuro-2024-0149","DOIUrl":"10.1515/revneuro-2024-0149","url":null,"abstract":"<p><p>This review explores the correlation of non-alcoholic fatty liver disease (NAFLD) with cognitive function and brain changes. A comprehensive search of relevant studies in the PubMed database up to June 2024 was conducted, including various study designs such as cross-sectional, longitudinal, case-control, and cohort studies. Data were extracted from 24 studies, focusing on study design, sample size, NAFLD diagnosis, control of confounders, key findings, and limitations. Neuropsychological tests utilized within each study were grouped into relevant cognitive domains. Statistical analyses and comparisons were also performed on the observed changes in brain parameters across the studies. The meta-analysis on the domain of general cognition was conducted. Results indicated that NAFLD was significantly associated with general cognition, executive function, attention, and memory. NAFLD impacts the total brain volume, the volumes of specific brain regions and certain high-intensity brain regions, the cerebral blood flow and perfusion, the integrity of nerve fiber bundles, and the brain abnormalities or lesions such as cerebral hemorrhage, cerebral microbleeds, and white matter lesions. NAFLD also affects the thickness and surface area of certain cortical regions and the resting-state brain function MRI indicators in specific brain areas. Despite these findings, the included studies varied in design, population characteristics, and outcome measures, which introduced heterogeneity that might influence the generalizability of the results. Overall, NAFLD is associated with a decline in cognitive function and alterations in certain brain parameters. Furthermore, NAFLD may exert its influence on cognition by impacting brain structure.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The essential role of cerebrospinal fluid in the brain; a comprehensive review.","authors":"Farhad Mashayekhi, Zivar Salehi","doi":"10.1515/revneuro-2024-0156","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0156","url":null,"abstract":"<p><p>There has been a significant amount of attention directed towards understanding brain development, shedding light on the underlying mechanisms. The proliferation and differentiation of brain stem cells have been a key focus. The process of neurolation occurs during the early stages of embryonic development, leading to the formation of the neural tube, a hollow nerve cord that gives rise to the central nervous system (CNS). There is a growing emphasis on the fluid-filled space inside the developing CNS and the potential role of cerebrospinal fluid (CSF) in brain development. The flow of CSF near the germinal epithelium significantly impacts the proliferation of cells in the cerebral cortex. CSF provides crucial support to the germinal epithelium, influencing the growth and differentiation of neural stem cells. It achieves this by releasing growth factors, cytokines, and morphogens that control the proliferation, survival, and migration of neuroepithelium. During development, the concentration of proteins in the CSF is notably higher compared to that in adults. Studies have indicated that removing CSF from the brain's ventricles during development causes an increase in neural cell deaths and a reduction in neural cell proliferation, ultimately leading to a thinner cerebral cortex. Additionally, many researches demonstrate that the composition of the CSF is essential for maintaining germinal matrix function and output, highlighting the critical role of CSF in brain development. It is concluded that CSF impacts the proliferation and differentiation of neural stem cells, which in turn plays a pivotal role in brain development.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase-amplitude coupling during auditory steady-state stimulation: a methodological review.","authors":"Aurimas Mockevičius, Inga Griškova-Bulanova","doi":"10.1515/revneuro-2024-0165","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0165","url":null,"abstract":"<p><p>Auditory steady-state response (ASSR) is a robust method to probe gamma (>30 Hz) activity in a controlled manner. While typically the magnitude and the phase synchronization over stimulus repetitions of ASSR is assessed, other measures are being investigated. One of them is phase-amplitude coupling (PAC), which reflects the interactions between lower frequency phase and higher frequency amplitude. Considering that the number of studies assessing PAC during auditory steady-state stimulation has grown recently, in the present work, we aimed to perform a comprehensive overview of PAC methodological approaches in ASSR studies. We sought to evaluate the studies according to PAC analysis issues emphasized in empirical and theoretical PAC studies. Our work showed considerable variability in the methodology among the reviewed studies. Furthermore, the reviewed works address methodological issues and confounding factors of PAC relatively poorly and are characterized by insufficient descriptions of the applied approaches. Our review shows that systematic research of PAC in the context of ASSR is imperative in order to properly evaluate the presence of PAC during the auditory steady-state stimulation.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders.","authors":"Pantea Allami, Niloufar Yazdanpanah, Nima Rezaei","doi":"10.1515/revneuro-2024-0153","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0153","url":null,"abstract":"<p><p>Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer's disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Wang, Shanshan Zhu, Shuyang Chen, Ju Zou, Peng Zeng, Sijie Tan
{"title":"Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms.","authors":"Nan Wang, Shanshan Zhu, Shuyang Chen, Ju Zou, Peng Zeng, Sijie Tan","doi":"10.1515/revneuro-2024-0147","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0147","url":null,"abstract":"<p><p>Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of \"exerkines\" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rad Ghannadzadeh Kermani Pour, Sara Kamali Zounouzi, Melina Farshbafnadi, Nima Rezaei
{"title":"The interplay between gut microbiota composition and dementia.","authors":"Rad Ghannadzadeh Kermani Pour, Sara Kamali Zounouzi, Melina Farshbafnadi, Nima Rezaei","doi":"10.1515/revneuro-2024-0113","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0113","url":null,"abstract":"<p><p>Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as <i>Bifidobacterium breve</i>, <i>Akkermansia muciniphila</i>, <i>Streptococcus thermophilus</i>, <i>Escherichia coli</i>, <i>Blautia hydrogenotrophica</i>, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nooshin Goudarzi, Zahra Taheri, Amir Mohammad Nezhad Salari, Kimia Kazemzadeh, Abbas Tafakhori
{"title":"Recognition and classification of facial expression using artificial intelligence as a key of early detection in neurological disorders.","authors":"Nooshin Goudarzi, Zahra Taheri, Amir Mohammad Nezhad Salari, Kimia Kazemzadeh, Abbas Tafakhori","doi":"10.1515/revneuro-2024-0125","DOIUrl":"https://doi.org/10.1515/revneuro-2024-0125","url":null,"abstract":"<p><p>The recognition and classification of facial expressions using artificial intelligence (AI) presents a promising avenue for early detection and monitoring of neurodegenerative disorders. This narrative review critically examines the current state of AI-driven facial expression analysis in the context of neurodegenerative diseases, such as Alzheimer's and Parkinson's. We discuss the potential of AI techniques, including deep learning and computer vision, to accurately interpret and categorize subtle changes in facial expressions associated with these pathological conditions. Furthermore, we explore the role of facial expression recognition as a noninvasive, cost-effective tool for screening, disease progression tracking, and personalized intervention in neurodegenerative disorders. The review also addresses the challenges, ethical considerations, and future prospects of integrating AI-based facial expression analysis into clinical practice for early intervention and improved quality of life for individuals at risk of or affected by neurodegenerative diseases.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyu Zhu, Shen Sun, Lan Lin, Yutong Wu, Xiangge Ma
{"title":"Transformer-based approaches for neuroimaging: an in-depth review of their role in classification and regression tasks.","authors":"Xinyu Zhu, Shen Sun, Lan Lin, Yutong Wu, Xiangge Ma","doi":"10.1515/revneuro-2024-0088","DOIUrl":"10.1515/revneuro-2024-0088","url":null,"abstract":"<p><p>In the ever-evolving landscape of deep learning (DL), the transformer model emerges as a formidable neural network architecture, gaining significant traction in neuroimaging-based classification and regression tasks. This paper presents an extensive examination of transformer's application in neuroimaging, surveying recent literature to elucidate its current status and research advancement. Commencing with an exposition on the fundamental principles and structures of the transformer model and its variants, this review navigates through the methodologies and experimental findings pertaining to their utilization in neuroimage classification and regression tasks. We highlight the transformer model's prowess in neuroimaging, showcasing its exceptional performance in classification endeavors while also showcasing its burgeoning potential in regression tasks. Concluding with an assessment of prevailing challenges and future trajectories, this paper proffers insights into prospective research directions. By elucidating the current landscape and envisaging future trends, this review enhances comprehension of transformer's role in neuroimaging tasks, furnishing valuable guidance for further inquiry.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"209-228"},"PeriodicalIF":3.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}