Rad Ghannadzadeh Kermani Pour, Sara Kamali Zounouzi, Melina Farshbafnadi, Nima Rezaei
{"title":"肠道菌群组成与痴呆之间的相互作用。","authors":"Rad Ghannadzadeh Kermani Pour, Sara Kamali Zounouzi, Melina Farshbafnadi, Nima Rezaei","doi":"10.1515/revneuro-2024-0113","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as <i>Bifidobacterium breve</i>, <i>Akkermansia muciniphila</i>, <i>Streptococcus thermophilus</i>, <i>Escherichia coli</i>, <i>Blautia hydrogenotrophica</i>, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interplay between gut microbiota composition and dementia.\",\"authors\":\"Rad Ghannadzadeh Kermani Pour, Sara Kamali Zounouzi, Melina Farshbafnadi, Nima Rezaei\",\"doi\":\"10.1515/revneuro-2024-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as <i>Bifidobacterium breve</i>, <i>Akkermansia muciniphila</i>, <i>Streptococcus thermophilus</i>, <i>Escherichia coli</i>, <i>Blautia hydrogenotrophica</i>, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.</p>\",\"PeriodicalId\":49623,\"journal\":{\"name\":\"Reviews in the Neurosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in the Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/revneuro-2024-0113\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2024-0113","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The interplay between gut microbiota composition and dementia.
Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as Bifidobacterium breve, Akkermansia muciniphila, Streptococcus thermophilus, Escherichia coli, Blautia hydrogenotrophica, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.
期刊介绍:
Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.