Siberian Mathematical Journal最新文献

筛选
英文 中文
Light 3-Paths in 3-Polytopes without Adjacent Triangles 无相邻三角形的 3 多面体中的光 3 路径
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-03-25 DOI: 10.1134/s0037446624020022
O. V. Borodin, A. O. Ivanova
{"title":"Light 3-Paths in 3-Polytopes without Adjacent Triangles","authors":"O. V. Borodin, A. O. Ivanova","doi":"10.1134/s0037446624020022","DOIUrl":"https://doi.org/10.1134/s0037446624020022","url":null,"abstract":"<p>Let <span>( w_{k} )</span> be the maximum of the minimum degree-sum (weight) of vertices in <span>( k )</span>-vertex paths (<span>( k )</span>-paths) in 3-polytopes.\u0000Trivially, each 3-polytope has a vertex of degree at most 5, and so <span>( w_{1}leq 5 )</span>.\u0000Back in 1955, Kotzig proved that <span>( w_{2}leq 13 )</span> (so there is an edge of weight at most 13), which is sharp.\u0000In 1993, Ando, Iwasaki, and Kaneko proved that <span>( w_{3}leq 21 )</span>, which is also sharp\u0000due to a construction by Jendrol’ of 1997.\u0000In 1997, Borodin refined this by proving that <span>( w_{3}leq 18 )</span> for 3-polytopes with <span>( w_{2}geq 7 )</span>,\u0000while <span>( w_{3}leq 17 )</span> holds for 3-polytopes\u0000with <span>( w_{2}geq 8 )</span>, where the sharpness of 18 was confirmed by Borodin et al. in 2013,\u0000and that of 17 was known long ago.\u0000Over the last three decades, much research has been devoted to structural and coloring problems\u0000on the plane graphs that are sparse in this or that sense.\u0000In this paper we deal with 3-polytopes without adjacent 3-cycles that is without chordal 4-cycle\u0000(in other words, without <span>( K_{4}-e )</span>).\u0000It is known that such 3-polytopes satisfy <span>( w_{1}leq 4 )</span>; and, moreover, <span>( w_{2}leq 9 )</span> holds, where\u0000both bounds are sharp (Borodin, 1992).\u0000We prove now that each 3-polytope without chordal 4-cycles\u0000has a 3-path of weight at most 15; and so <span>( w_{3}leq 15 )</span>, which is sharp.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasidenseness in $ ��^{��} $ and Projective Parallelotopes $�^{��}中的类等性与投影平行拓扑
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-03-25 DOI: 10.1134/s0037446624020034
A. E. Gutman, I. A. Emelianenkov
{"title":"Quasidenseness in $ ��^{��} $ and Projective Parallelotopes","authors":"A. E. Gutman, I. A. Emelianenkov","doi":"10.1134/s0037446624020034","DOIUrl":"https://doi.org/10.1134/s0037446624020034","url":null,"abstract":"<p>We establish two new criteria for the closedness of Archimedean cones in countable-dimensional locally convex spaces\u0000in terms of projective parallelotopes and projective automorphisms.\u0000We also answer some open questions about quasidenseness and quasi-interior.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Stability by Linear Approximation of Discrete-Time Nonlinear Singular Systems 离散时间非线性奇异系统的线性近似稳定性
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-03-01 DOI: 10.1134/s0037446624020137
A. A. Shcheglova
{"title":"The Stability by Linear Approximation of Discrete-Time Nonlinear Singular Systems","authors":"A. A. Shcheglova","doi":"10.1134/s0037446624020137","DOIUrl":"https://doi.org/10.1134/s0037446624020137","url":null,"abstract":"","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140407498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Relation between Denjoy–Khintchine and $ operatorname{HK}_{r} $ -Integrals 论丹乔伊-欣钦因与 $ operatorname{HK}_{r} $ - 积分的关系
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-03-01 DOI: 10.1134/s0037446624020162
{"title":"On the Relation between Denjoy–Khintchine and $ operatorname{HK}_{r} $ -Integrals","authors":"","doi":"10.1134/s0037446624020162","DOIUrl":"https://doi.org/10.1134/s0037446624020162","url":null,"abstract":"<h3>Abstract</h3> <p>We locate Musial and Sagher’s concept of <span> <span>( operatorname{HK}_{r} )</span> </span>-integration within the approximate Henstock–Kurzweil integral theory. If we restrict the <span> <span>( operatorname{HK}_{r} )</span> </span>-integral by the requirement that the indefinite <span> <span>( operatorname{HK}_{r} )</span> </span>-integral is continuous, then it becomes included in the classical Denjoy–Khintchine integral. We provide a direct argument demonstrating that this inclusion is proper.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Character Contractibility and Amenability of Banach Algebras with Applications to Quantum Groups 巴拿赫代数的特性可约性和可悔改性及其在量子群中的应用
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-03-01 DOI: 10.1134/s0037446624020174
S. Soltani Renani, Z. Yari
{"title":"Character Contractibility and Amenability of Banach Algebras with Applications to Quantum Groups","authors":"S. Soltani Renani, Z. Yari","doi":"10.1134/s0037446624020174","DOIUrl":"https://doi.org/10.1134/s0037446624020174","url":null,"abstract":"","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140406718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel 论具有非enerate 内核的自兼偏积分算子的谱特性
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-03-01 DOI: 10.1134/s0037446624020204
{"title":"On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel","authors":"","doi":"10.1134/s0037446624020204","DOIUrl":"https://doi.org/10.1134/s0037446624020204","url":null,"abstract":"<h3>Abstract</h3> <p>We consider bounded selfadjoint linear integral operators <span> <span>( T_{1} )</span> </span> and <span> <span>( T_{2} )</span> </span> in the Hilbert space <span> <span>( L_{2}([a,b]times[c,d]) )</span> </span> which are usually called partial integral operators. We assume that <span> <span>( T_{1} )</span> </span> acts on a function <span> <span>( f(x,y) )</span> </span> in the first argument and performs integration in <span> <span>( x )</span> </span>, while <span> <span>( T_{2} )</span> </span> acts on <span> <span>( f(x,y) )</span> </span> in the second argument and performs integration in <span> <span>( y )</span> </span>. We assume further that <span> <span>( T_{1} )</span> </span> and <span> <span>( T_{2} )</span> </span> are bounded but not compact, whereas <span> <span>( T_{1}T_{2} )</span> </span> is compact and <span> <span>( T_{1}T_{2}=T_{2}T_{1} )</span> </span>. Partial integral operators arise in various areas of mechanics, the theory of integro-differential equations, and the theory of Schrödinger operators. We study the spectral properties of <span> <span>( T_{1} )</span> </span>, <span> <span>( T_{2} )</span> </span>, and <span> <span>( T_{1}+T_{2} )</span> </span> with nondegenerate kernels and established some formula for the essential spectra of <span> <span>( T_{1} )</span> </span> and <span> <span>( T_{2} )</span> </span>. Furthermore, we demonstrate that the discrete spectra of <span> <span>( T_{1} )</span> </span> and <span> <span>( T_{2} )</span> </span> are empty, and prove a theorem on the structure of the essential spectrum of <span> <span>( T_{1}+T_{2} )</span> </span>. Also, under study is the problem of existence of countably many eigenvalues in the discrete spectrum of <span> <span>( T_{1}+T_{2} )</span> </span>.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Injectivity Radius and Shortest Arcs of the Oblate Ellipsoid of Revolution 旋转椭圆体的注入半径和最短弧线
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-02-07 DOI: 10.1134/s0037446624010026
V. N. Berestovskii, A. Mustafa
{"title":"The Injectivity Radius and Shortest Arcs of the Oblate Ellipsoid of Revolution","authors":"V. N. Berestovskii, A. Mustafa","doi":"10.1134/s0037446624010026","DOIUrl":"https://doi.org/10.1134/s0037446624010026","url":null,"abstract":"<p>We found the geodesics, shortest arcs, cut loci, and injectivity radius\u0000of any oblate ellipsoid of revolution in three-dimensional Euclidean space.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates of Alexandrov’s $ n $ -Width of the Compact Set of $ C^{infty} $ -Smooth Functions on a Finite Segment 亚历山德罗夫有限段上$ C^{infty} $光滑函数紧凑集的$ n $宽的估计值
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-02-07 DOI: 10.1134/s0037446624010014
V. N. Belykh
{"title":"Estimates of Alexandrov’s $ n $ -Width of the Compact Set of $ C^{infty} $ -Smooth Functions on a Finite Segment","authors":"V. N. Belykh","doi":"10.1134/s0037446624010014","DOIUrl":"https://doi.org/10.1134/s0037446624010014","url":null,"abstract":"<p>We obtain two-sided\u0000estimates for Alexandrov’s <span>( n )</span>-width of\u0000the compact set of infinitely smooth functions\u0000boundedly embedded into the space of continuous functions on a finite segment.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological Properties of Mappings with Finite Distortion on Carnot Groups 卡诺群上有限畸变映射的拓扑特性
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-02-07 DOI: 10.1134/s0037446624010063
D. V. Isangulova
{"title":"Topological Properties of Mappings with Finite Distortion on Carnot Groups","authors":"D. V. Isangulova","doi":"10.1134/s0037446624010063","DOIUrl":"https://doi.org/10.1134/s0037446624010063","url":null,"abstract":"<p>We prove that\u0000every mapping with finite distortion on a Carnot group\u0000is open and discrete provided that it is quasilight and the distortion coefficient is integrable.\u0000Also, we estimate the Hausdorff dimension of the preimages of points\u0000for mappings on a Carnot group\u0000with a bounded multiplicity function\u0000and summable distortion coefficient.\u0000Furthermore, we give some example showing that\u0000the obtained estimates cannot be improved.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Separability of Abelian Subgroups of the Fundamental Groups of Graphs of Groups. II 论图形群基本群的无性子群的可分性。(英)
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-02-07 DOI: 10.1134/s0037446624010166
E. V. Sokolov
{"title":"On the Separability of Abelian Subgroups of the Fundamental Groups of Graphs of Groups. II","authors":"E. V. Sokolov","doi":"10.1134/s0037446624010166","DOIUrl":"https://doi.org/10.1134/s0037446624010166","url":null,"abstract":"<p>Consider the fundamental group <span>( {mathfrak{G}} )</span>\u0000of an arbitrary graph of groups\u0000and some root class <span>( {mathcal{C}} )</span>\u0000of groups,\u0000i.e., a class containing a nontrivial group\u0000and closed under subgroups,\u0000extensions,\u0000and unrestricted direct products of the form\u0000<span>( prod_{yin Y}X_{y} )</span>,\u0000where\u0000<span>( X,Yin{mathcal{C}} )</span>\u0000and <span>( X_{y} )</span>\u0000is an isomorphic copy of <span>( X )</span>\u0000for each\u0000<span>( yin Y )</span>.\u0000We provide some criterion for the separability by <span>( {mathcal{C}} )</span>\u0000of a finitely generated abelian subgroup of <span>( {mathfrak{G}} )</span>\u0000valid when\u0000the group satisfies an analog of the Baumslag filtration condition.\u0000This enables us to describe\u0000the <span>( {mathcal{C}} )</span>-separable finitely generated abelian subgroups\u0000for the fundamental groups of some graphs of groups\u0000with central edge subgroups.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信