关于自同构群和分裂扩展的虚势

Pub Date : 2023-11-24 DOI:10.1134/s0037446623060010
D. N. Azarov
{"title":"关于自同构群和分裂扩展的虚势","authors":"D. N. Azarov","doi":"10.1134/s0037446623060010","DOIUrl":null,"url":null,"abstract":"<p>We obtain some sufficient conditions for potency and virtual potency for automorphism\ngroups and the split extensions of some groups. In particular, considering\na finitely generated group <span>\\( G \\)</span> residually <span>\\( p \\)</span>-finite for every prime <span>\\( p \\)</span>,\nwe prove that each split extension of <span>\\( G \\)</span> by a torsion-free potent group is a potent group,\nand if the abelianization rank of <span>\\( G \\)</span> is at most 2 then the automorphism group of <span>\\( G \\)</span> is virtually\npotent. As a corollary, we derive the necessary and sufficient conditions of virtual potency\nfor certain generalized free products and HNN-extensions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Virtual Potency of Automorphism Groups and Split Extensions\",\"authors\":\"D. N. Azarov\",\"doi\":\"10.1134/s0037446623060010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain some sufficient conditions for potency and virtual potency for automorphism\\ngroups and the split extensions of some groups. In particular, considering\\na finitely generated group <span>\\\\( G \\\\)</span> residually <span>\\\\( p \\\\)</span>-finite for every prime <span>\\\\( p \\\\)</span>,\\nwe prove that each split extension of <span>\\\\( G \\\\)</span> by a torsion-free potent group is a potent group,\\nand if the abelianization rank of <span>\\\\( G \\\\)</span> is at most 2 then the automorphism group of <span>\\\\( G \\\\)</span> is virtually\\npotent. As a corollary, we derive the necessary and sufficient conditions of virtual potency\\nfor certain generalized free products and HNN-extensions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446623060010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446623060010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了自同构群的幂位和虚幂位的充分条件,以及一些群的分裂扩展。特别地,考虑到有限生成群\( G \)对每一个素数\( p \)都是残\( p \) -有限的,我们证明了一个无扭幂群对\( G \)的每一个分裂扩展都是幂群,如果\( G \)的阿贝尔化秩不大于2,则\( G \)的自同构群是虚幂群。作为推论,我们得到了某些广义自由积和hnn扩展的虚势的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Virtual Potency of Automorphism Groups and Split Extensions

We obtain some sufficient conditions for potency and virtual potency for automorphism groups and the split extensions of some groups. In particular, considering a finitely generated group \( G \) residually \( p \)-finite for every prime \( p \), we prove that each split extension of \( G \) by a torsion-free potent group is a potent group, and if the abelianization rank of \( G \) is at most 2 then the automorphism group of \( G \) is virtually potent. As a corollary, we derive the necessary and sufficient conditions of virtual potency for certain generalized free products and HNN-extensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信