拟线性双曲型系统的有限时间镇定及指数稳定性

Pub Date : 2023-11-24 DOI:10.1134/s0037446623060101
N. A. Lyul’ko
{"title":"拟线性双曲型系统的有限时间镇定及指数稳定性","authors":"N. A. Lyul’ko","doi":"10.1134/s0037446623060101","DOIUrl":null,"url":null,"abstract":"<p>We consider the asymptotic properties of solutions to the mixed problems\nfor the quasilinear nonautonomous first-order hyperbolic systems with\ntwo variables in the case of smoothing boundary conditions.\nWe prove that all smooth solutions to the problem for a decoupled hyperbolic system\nstabilize to zero in finite time independently of the initial data.\nIf the hyperbolic system is coupled then we show that\nthe zero solution to the quasilinear problem is exponentially stable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems\",\"authors\":\"N. A. Lyul’ko\",\"doi\":\"10.1134/s0037446623060101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the asymptotic properties of solutions to the mixed problems\\nfor the quasilinear nonautonomous first-order hyperbolic systems with\\ntwo variables in the case of smoothing boundary conditions.\\nWe prove that all smooth solutions to the problem for a decoupled hyperbolic system\\nstabilize to zero in finite time independently of the initial data.\\nIf the hyperbolic system is coupled then we show that\\nthe zero solution to the quasilinear problem is exponentially stable.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446623060101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446623060101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在光滑边界条件下,研究拟线性两变量一阶非自治双曲型系统混合问题解的渐近性质。证明了解耦双曲型系统的所有光滑解在有限时间内稳定于零,与初始数据无关。如果双曲系统是耦合的,那么我们证明了拟线性问题的零解是指数稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems

We consider the asymptotic properties of solutions to the mixed problems for the quasilinear nonautonomous first-order hyperbolic systems with two variables in the case of smoothing boundary conditions. We prove that all smooth solutions to the problem for a decoupled hyperbolic system stabilize to zero in finite time independently of the initial data. If the hyperbolic system is coupled then we show that the zero solution to the quasilinear problem is exponentially stable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信