与 S4.2 有关的模态逻辑中的可接受性和统一性

Pub Date : 2024-01-01 DOI:10.1134/s0037446624010154
{"title":"与 S4.2 有关的模态逻辑中的可接受性和统一性","authors":"","doi":"10.1134/s0037446624010154","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We study unification and admissibility for an infinite class of modal logics. Conditions superimposed to these logics are to be decidable, Kripke complete, and generated by the classes of rooted frames possessing the greatest clusters of states (in particular, these logics extend modal logic S4.2). Given such logic <span> <span>\\( L \\)</span> </span> and each formula <span> <span>\\( \\alpha \\)</span> </span> unifiable in <span> <span>\\( L \\)</span> </span>, we construct a unifier <span> <span>\\( \\sigma \\)</span> </span> for <span> <span>\\( \\alpha \\)</span> </span> in <span> <span>\\( L \\)</span> </span>, where <span> <span>\\( \\sigma \\)</span> </span> verifies admissibility in <span> <span>\\( L \\)</span> </span> of arbitrary inference rules <span> <span>\\( \\alpha/\\beta \\)</span> </span> with a switched-modality conclusions <span> <span>\\( \\beta \\)</span> </span> (i.e., <span> <span>\\( \\sigma \\)</span> </span> solves the admissibility problem for such rules).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Admissibility and Unification in the Modal Logics Related to S4.2\",\"authors\":\"\",\"doi\":\"10.1134/s0037446624010154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We study unification and admissibility for an infinite class of modal logics. Conditions superimposed to these logics are to be decidable, Kripke complete, and generated by the classes of rooted frames possessing the greatest clusters of states (in particular, these logics extend modal logic S4.2). Given such logic <span> <span>\\\\( L \\\\)</span> </span> and each formula <span> <span>\\\\( \\\\alpha \\\\)</span> </span> unifiable in <span> <span>\\\\( L \\\\)</span> </span>, we construct a unifier <span> <span>\\\\( \\\\sigma \\\\)</span> </span> for <span> <span>\\\\( \\\\alpha \\\\)</span> </span> in <span> <span>\\\\( L \\\\)</span> </span>, where <span> <span>\\\\( \\\\sigma \\\\)</span> </span> verifies admissibility in <span> <span>\\\\( L \\\\)</span> </span> of arbitrary inference rules <span> <span>\\\\( \\\\alpha/\\\\beta \\\\)</span> </span> with a switched-modality conclusions <span> <span>\\\\( \\\\beta \\\\)</span> </span> (i.e., <span> <span>\\\\( \\\\sigma \\\\)</span> </span> solves the admissibility problem for such rules).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624010154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624010154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究无限类模态逻辑的统一性和可接受性。附加在这些逻辑上的条件是可判定的、克里普克完备的,并且是由拥有最大状态簇的有根框架类产生的(特别是,这些逻辑扩展了模态逻辑S4.2)。给定这样的逻辑\( L\) 和每个公式\( \alpha\) 在\( L\) 中都是可统一的,我们为\( \alpha\) 在\( L\) 中构造一个统一符\( \sigma\)、其中 \( \sigma\) 验证了任意推理规则 \( \alpha/\beta \)在 \( L\) 中的可接受性,这些推理规则具有交换模式结论 \( \beta \)(即.e., \解决了这类规则的可接受性问题)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Admissibility and Unification in the Modal Logics Related to S4.2

Abstract

We study unification and admissibility for an infinite class of modal logics. Conditions superimposed to these logics are to be decidable, Kripke complete, and generated by the classes of rooted frames possessing the greatest clusters of states (in particular, these logics extend modal logic S4.2). Given such logic \( L \) and each formula \( \alpha \) unifiable in \( L \) , we construct a unifier  \( \sigma \) for  \( \alpha \) in  \( L \) , where \( \sigma \) verifies admissibility in \( L \) of arbitrary inference rules \( \alpha/\beta \) with a switched-modality conclusions  \( \beta \) (i.e.,  \( \sigma \) solves the admissibility problem for such rules).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信