{"title":"群$ PSL_{3}(2^{m}) $和$ PSU_{3}(q^{2}) $积为1的最小生成对合数","authors":"R. I. Gvozdev, Ya. N. Nuzhin","doi":"10.1134/s0037446623060058","DOIUrl":null,"url":null,"abstract":"<p>Considering the groups <span>\\( PSL_{3}(2^{m}) \\)</span> and <span>\\( PSU_{3}(q^{2}) \\)</span>, we find the minimal number of generating\ninvolutions whose product is 1. This number is 7 for <span>\\( PSU_{3}(3^{2}) \\)</span> and 5 or 6\nin the remaining cases.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Minimal Number of Generating Involutions Whose Product Is 1 for the Groups $ PSL_{3}(2^{m}) $ and $ PSU_{3}(q^{2}) $\",\"authors\":\"R. I. Gvozdev, Ya. N. Nuzhin\",\"doi\":\"10.1134/s0037446623060058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Considering the groups <span>\\\\( PSL_{3}(2^{m}) \\\\)</span> and <span>\\\\( PSU_{3}(q^{2}) \\\\)</span>, we find the minimal number of generating\\ninvolutions whose product is 1. This number is 7 for <span>\\\\( PSU_{3}(3^{2}) \\\\)</span> and 5 or 6\\nin the remaining cases.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446623060058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446623060058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Minimal Number of Generating Involutions Whose Product Is 1 for the Groups $ PSL_{3}(2^{m}) $ and $ PSU_{3}(q^{2}) $
Considering the groups \( PSL_{3}(2^{m}) \) and \( PSU_{3}(q^{2}) \), we find the minimal number of generating
involutions whose product is 1. This number is 7 for \( PSU_{3}(3^{2}) \) and 5 or 6
in the remaining cases.