{"title":"参数全纯分布的正则化","authors":"A. L. Pavlov","doi":"10.1134/s0037446623060137","DOIUrl":null,"url":null,"abstract":"<p>We give sufficient conditions for regularizing a distribution of the form\n<span>\\( a(\\sigma,\\lambda)f(\\lambda) \\)</span>,\nwhere\n<span>\\( f(\\lambda) \\)</span>\nis a distribution holomorphic in the parameter <span>\\( \\lambda \\)</span>,\nwhile <span>\\( a(\\sigma,\\lambda) \\)</span>\nis an infinitely differentiable function of <span>\\( \\sigma \\)</span>\noutside some closed set <span>\\( N \\)</span>\nwith power singularities of derivatives on <span>\\( N \\)</span>\nand holomorphic in <span>\\( \\lambda \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization of a Distribution Holomorphic in a Parameter\",\"authors\":\"A. L. Pavlov\",\"doi\":\"10.1134/s0037446623060137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give sufficient conditions for regularizing a distribution of the form\\n<span>\\\\( a(\\\\sigma,\\\\lambda)f(\\\\lambda) \\\\)</span>,\\nwhere\\n<span>\\\\( f(\\\\lambda) \\\\)</span>\\nis a distribution holomorphic in the parameter <span>\\\\( \\\\lambda \\\\)</span>,\\nwhile <span>\\\\( a(\\\\sigma,\\\\lambda) \\\\)</span>\\nis an infinitely differentiable function of <span>\\\\( \\\\sigma \\\\)</span>\\noutside some closed set <span>\\\\( N \\\\)</span>\\nwith power singularities of derivatives on <span>\\\\( N \\\\)</span>\\nand holomorphic in <span>\\\\( \\\\lambda \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446623060137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446623060137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了正则化形式为\( a(\sigma,\lambda)f(\lambda) \)的分布的充分条件,其中\( f(\lambda) \)是参数\( \lambda \)内的全纯分布,而\( a(\sigma,\lambda) \)是在\( N \)上导数有幂奇点且在\( \lambda \)上全纯的某个闭集\( N \)外的\( \sigma \)的无穷可微函数。
Regularization of a Distribution Holomorphic in a Parameter
We give sufficient conditions for regularizing a distribution of the form
\( a(\sigma,\lambda)f(\lambda) \),
where
\( f(\lambda) \)
is a distribution holomorphic in the parameter \( \lambda \),
while \( a(\sigma,\lambda) \)
is an infinitely differentiable function of \( \sigma \)
outside some closed set \( N \)
with power singularities of derivatives on \( N \)
and holomorphic in \( \lambda \).