SIAM Journal on Numerical Analysis最新文献

筛选
英文 中文
Multilevel Monte Carlo Methods for the Dean–Kawasaki Equation from Fluctuating Hydrodynamics
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-31 DOI: 10.1137/23m1617345
Federico Cornalba, Julian Fischer
{"title":"Multilevel Monte Carlo Methods for the Dean–Kawasaki Equation from Fluctuating Hydrodynamics","authors":"Federico Cornalba, Julian Fischer","doi":"10.1137/23m1617345","DOIUrl":"https://doi.org/10.1137/23m1617345","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 262-287, February 2025. <br/> Abstract. Stochastic PDEs of fluctuating hydrodynamics are a powerful tool for the description of fluctuations in many-particle systems. In this paper, we develop and analyze a multilevel Monte Carlo (MLMC) scheme for the Dean–Kawasaki equation, a pivotal representative of this class of SPDEs. We prove analytically and demonstrate numerically that our MLMC scheme provides a significant reduction in computational cost (with respect to a standard Monte Carlo method) in the simulation of the Dean–Kawasaki equation. Specifically, we link this reduction in cost to having a sufficiently large average particle density and show that sizeable cost reductions can be obtained even when we have solutions with regions of low density. Numerical simulations are provided in the two-dimensional case, confirming our theoretical predictions. Our results are formulated entirely in terms of the law of distributions rather than in terms of strong spatial norms: this crucially allows for MLMC speed-ups altogether despite the Dean–Kawasaki equation being highly singular.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"19 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Priori Analysis of a Tensor ROM for Parameter Dependent Parabolic Problems
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-28 DOI: 10.1137/23m1616844
Alexander V. Mamonov, Maxim A. Olshanskii
{"title":"A Priori Analysis of a Tensor ROM for Parameter Dependent Parabolic Problems","authors":"Alexander V. Mamonov, Maxim A. Olshanskii","doi":"10.1137/23m1616844","DOIUrl":"https://doi.org/10.1137/23m1616844","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 239-261, February 2025. <br/> Abstract. A space–time–parameters structure of parametric parabolic PDEs motivates the application of tensor methods to define reduced order models (ROMs). Within a tensor-based ROM framework, the matrix SVD—a traditional dimension reduction technique—yields to a low-rank tensor decomposition (LRTD). Such tensor extension of the Galerkin proper orthogonal decomposition ROMs (POD–ROMs) benefits both the practical efficiency of the ROM and its amenability for rigorous error analysis when applied to parametric PDEs. The paper addresses the error analysis of the Galerkin LRTD–ROM for an abstract linear parabolic problem that depends on multiple physical parameters. An error estimate for the LRTD–ROM solution is proved, which is uniform with respect to problem parameters and extends to parameter values not in a sampling/training set. The estimate is given in terms of discretization and sampling mesh properties and LRTD accuracy. The estimate depends on the local smoothness rather than on the Kolmogorov [math]-widths of the parameterized manifold of solutions. Theoretical results are illustrated with several numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"24 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Approximation of Discontinuous Solutions of the Semilinear Wave Equation
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-27 DOI: 10.1137/24m1635879
Jiachuan Cao, Buyang Li, Yanping Lin, Fangyan Yao
{"title":"Numerical Approximation of Discontinuous Solutions of the Semilinear Wave Equation","authors":"Jiachuan Cao, Buyang Li, Yanping Lin, Fangyan Yao","doi":"10.1137/24m1635879","DOIUrl":"https://doi.org/10.1137/24m1635879","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 214-238, February 2025. <br/> Abstract. A high-frequency recovered fully discrete low-regularity integrator is constructed to approximate rough and possibly discontinuous solutions of the semilinear wave equation. The proposed method, with high-frequency recovery techniques, can capture the discontinuities of the solutions correctly without spurious oscillations and approximate rough and discontinuous solutions with a higher convergence rate than preexisting methods. Rigorous analysis is presented for the convergence rates of the proposed method in approximating solutions such that [math] for [math]. For discontinuous solutions of bounded variation in one dimension (which allow jump discontinuities), the proposed method is proved to have almost first-order convergence under the step size condition [math], where [math] and [math] denote the time step size and the number of Fourier terms in the space discretization, respectively. Numerical examples are presented in both one and two dimensions to illustrate the advantages of the proposed method in improving the accuracy in approximating rough and discontinuous solutions of the semilinear wave equation. The numerical results are consistent with the theoretical results and show the efficiency of the proposed method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"20 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Criticality Measure-Based Error Estimates for Infinite Dimensional Optimization
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-23 DOI: 10.1137/24m1647023
Danlin Li, Johannes Milz
{"title":"Criticality Measure-Based Error Estimates for Infinite Dimensional Optimization","authors":"Danlin Li, Johannes Milz","doi":"10.1137/24m1647023","DOIUrl":"https://doi.org/10.1137/24m1647023","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 193-213, February 2025. <br/> Abstract. Motivated by optimization with differential equations, we consider optimization problems with Hilbert spaces as decision spaces. As a consequence of their infinite dimensionality, the numerical solution necessitates finite dimensional approximations and discretizations. We develop an approximation framework and demonstrate criticality measure-based error estimates. We consider criticality measures inspired by those used within optimization methods, such as semismooth Newton and (conditional) gradient methods. Furthermore, we show that our error estimates are optimal. Our findings augment existing distance-based error estimates but do not rely on strong convexity or second-order sufficient optimality conditions. Moreover, our error estimates can be used for code verification and validation. We illustrate our theoretical convergence rates on linear, semilinear, and bilinear PDE-constrained optimization problems.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"111 3S 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent Finite Difference Schemes for Stochastic Transport Equations 随机输运方程的收敛有限差分格式
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-22 DOI: 10.1137/23m159946x
Ulrik S. Fjordholm, Kenneth H. Karlsen, Peter H. C. Pang
{"title":"Convergent Finite Difference Schemes for Stochastic Transport Equations","authors":"Ulrik S. Fjordholm, Kenneth H. Karlsen, Peter H. C. Pang","doi":"10.1137/23m159946x","DOIUrl":"https://doi.org/10.1137/23m159946x","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 149-192, February 2025. <br/> Abstract. We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish [math] stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The [math] estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"52 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthogonal Polynomial Approximation and Extended Dynamic Mode Decomposition in Chaos 混沌中的正交多项式逼近与扩展动态模态分解
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-20 DOI: 10.1137/23m1597873
Caroline Wormell
{"title":"Orthogonal Polynomial Approximation and Extended Dynamic Mode Decomposition in Chaos","authors":"Caroline Wormell","doi":"10.1137/23m1597873","DOIUrl":"https://doi.org/10.1137/23m1597873","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 122-148, February 2025. <br/> Abstract. Extended dynamic mode decomposition (EDMD) is a data-driven tool for forecasting and model reduction of dynamics, which has been extensively taken up in the physical sciences. While the method is conceptually simple, in deterministic chaos it is unclear what its properties are or even what it converges to. In particular, it is not clear how EDMD’s least-squares approximation treats the classes of differentiable functions on which chaotic systems act. We develop for the first time a general, rigorous theory of EDMD on the simplest examples of chaotic maps: analytic expanding maps of the circle. To do this, we prove a new, basic approximation result in the theory of orthogonal polynomials on the unit circle (OPUC) and apply methods from transfer operator theory. We show that in the infinite-data limit, the least-squares projection error is exponentially small for trigonometric polynomial observable dictionaries. As a result, we show that forecasts and Koopman spectral data produced using EDMD in this setting converge to the physically meaningful limits, exponentially fast with respect to the size of the dictionary. This demonstrates that with only a relatively small polynomial dictionary, EDMD can be very effective, even when the sampling measure is not uniform. Furthermore, our OPUC result suggests that data-based least-squares projection may be a very effective approximation strategy more generally.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"107 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Energy-Stable Parametric Finite Element Method for the Planar Willmore Flow 平面Willmore流的能量稳定参数有限元法
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-13 DOI: 10.1137/24m1633893
Weizhu Bao, Yifei Li
{"title":"An Energy-Stable Parametric Finite Element Method for the Planar Willmore Flow","authors":"Weizhu Bao, Yifei Li","doi":"10.1137/24m1633893","DOIUrl":"https://doi.org/10.1137/24m1633893","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 103-121, February 2025. <br/> Abstract. We propose an energy-stable parametric finite element method (PFEM) for the planar Willmore flow and establish its unconditional energy stability of the full discretization scheme. The key lies in the introduction of two novel geometric identities to describe the planar Willmore flow: the first involves the coupling of the outward unit normal vector [math] and the normal velocity [math], and the second concerns the time derivative of the mean curvature [math]. Based on these, we derive a set of new geometric partial differential equations for the planar Willmore flow, leading to our new fully discretized and unconditionally energy-stable PFEM. Our stability analysis is also based on the two new geometric identities. Extensive numerical experiments are provided to illustrate our PFEM’s efficiency and validate its unconditional energy stability.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VEM-Nitsche Fully Discrete Polytopal Scheme for Frictionless Contact-Mechanics 无摩擦接触力学的VEM-Nitsche全离散多边形格式
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-09 DOI: 10.1137/24m1660218
Mohamed Laaziri, Roland Masson
{"title":"VEM-Nitsche Fully Discrete Polytopal Scheme for Frictionless Contact-Mechanics","authors":"Mohamed Laaziri, Roland Masson","doi":"10.1137/24m1660218","DOIUrl":"https://doi.org/10.1137/24m1660218","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 81-102, February 2025. <br/> Abstract. This work targets the discretization of contact-mechanics accounting for small strains, linear elastic constitutive laws, and fractures or faults represented as a network of co-dimension one planar interfaces. This type of model coupled with Darcy flow plays an important role typically for the simulation of fault reactivation by fluid injection in geological storage or the hydraulic fracture stimulation in enhanced geothermal systems. To simplify the presentation, a frictionless contact behavior at matrix fracture interfaces is considered, although the scheme developed in this work readily extends to more complex contact models such as the Mohr–Coulomb friction. To account for the geometrical complexity of subsurface, our discretization is based on the first order virtual element method (VEM), which generalizes the [math] finite element method to polytopal meshes. Following previous works in the finite element framework, the contact conditions are enforced in a weak sense using Nitsche’s formulation based on additional consistent penalization terms. We perform, in a fully discrete framework, the well-posedness and convergence analysis showing an optimal first order error estimate with minimal regularity assumptions. Numerical experiments confirm our theoretical findings and exhibit the good behavior of the nonlinear semismooth Newton solver.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"30 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primal Hybrid Finite Element Method for the Helmholtz Equation 亥姆霍兹方程的原始混合有限元法
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-07 DOI: 10.1137/24m1654038
A. Bendali
{"title":"Primal Hybrid Finite Element Method for the Helmholtz Equation","authors":"A. Bendali","doi":"10.1137/24m1654038","DOIUrl":"https://doi.org/10.1137/24m1654038","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 54-80, February 2025. <br/> Abstract. This study addresses some previously unexplored issues concerning the stability and error bounds of the primal hybrid finite element method. This method relaxes the strong interelement continuity conditions on the unknown [math] of a boundary-value problem, set in terms of a second-order elliptic partial differential equation, by means of a Lagrange multiplier [math] defined on the mesh skeleton. We show how the decomposition of the space of shape functions for the approximation of [math] allows us to derive conditions, simple to verify, ensuring the inf-sup condition of Brezzi and Babuška, crucial for the stability of the discrete problem, both in two and three dimensions. An adaptation of the analysis of the mixed finite element approximation of the Helmholtz equation [math] in [G. J. Fix and R. A. Nicolaides, SIAM J. Numer. Anal., 17 (1980), pp. 779–786] enables us to give stability conditions and error bounds, explicit in the mesh size [math] and [math]. Some numerical experiments show that the primal hybrid finite element method is more robust than the usual continuous finite element method with regard to dispersion anomalies, known as the pollution effect, particularly on well-smoothed meshes.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp Preasymptotic Error Bounds for the Helmholtz [math]-FEM Helmholtz [math]-FEM的尖锐前渐近误差界
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2025-01-06 DOI: 10.1137/23m1546178
J. Galkowski, E. A. Spence
{"title":"Sharp Preasymptotic Error Bounds for the Helmholtz [math]-FEM","authors":"J. Galkowski, E. A. Spence","doi":"10.1137/23m1546178","DOIUrl":"https://doi.org/10.1137/23m1546178","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 1-22, February 2025. <br/> Abstract. In the analysis of the [math]-version of the finite-element method (FEM), with fixed polynomial degree [math], applied to the Helmholtz equation with wavenumber [math], the asymptotic regime is when [math] is sufficiently small and the sequence of Galerkin solutions are quasioptimal; here [math] is the [math] norm of the Helmholtz solution operator, with [math] for nontrapping problems. In the preasymptotic regime, one expects that if [math] is sufficiently small, then (for physical data) the relative error of the Galerkin solution is controllably small. In this paper, we prove the natural error bounds in the preasymptotic regime for the variable-coefficient Helmholtz equation in the exterior of a Dirichlet, or Neumann, or penetrable obstacle (or combinations of these) and with the radiation condition either realized exactly using the Dirichlet-to-Neumann map on the boundary of a ball or approximated either by a radial perfectly matched layer (PML) or an impedance boundary condition. Previously, such bounds for [math] were only available for Dirichlet obstacles with the radiation condition approximated by an impedance boundary condition. Our result is obtained via a novel generalization of the “elliptic-projection” argument (the argument used to obtain the result for [math]), which can be applied to a wide variety of abstract Helmholtz-type problems.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"82 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信