Mária Lukáčová-Medviďová, Bangwei She, Yuhuan Yuan
{"title":"随机Navier-Stokes-Fourier系统蒙特卡罗方法的收敛性分析","authors":"Mária Lukáčová-Medviďová, Bangwei She, Yuhuan Yuan","doi":"10.1137/23m1563232","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1254-1280, June 2025. <br/> Abstract. In the present paper, we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier–Stokes–Fourier system. The Monte Carlo method, frequently used for approximating statistical moments, is combined with a suitable deterministic discretization method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to the statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"38 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis of the Monte Carlo Method for the Random Navier–Stokes–Fourier System\",\"authors\":\"Mária Lukáčová-Medviďová, Bangwei She, Yuhuan Yuan\",\"doi\":\"10.1137/23m1563232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1254-1280, June 2025. <br/> Abstract. In the present paper, we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier–Stokes–Fourier system. The Monte Carlo method, frequently used for approximating statistical moments, is combined with a suitable deterministic discretization method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to the statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1563232\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1563232","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Convergence Analysis of the Monte Carlo Method for the Random Navier–Stokes–Fourier System
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1254-1280, June 2025. Abstract. In the present paper, we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier–Stokes–Fourier system. The Monte Carlo method, frequently used for approximating statistical moments, is combined with a suitable deterministic discretization method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to the statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.