随机Navier-Stokes-Fourier系统蒙特卡罗方法的收敛性分析

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Mária Lukáčová-Medviďová, Bangwei She, Yuhuan Yuan
{"title":"随机Navier-Stokes-Fourier系统蒙特卡罗方法的收敛性分析","authors":"Mária Lukáčová-Medviďová, Bangwei She, Yuhuan Yuan","doi":"10.1137/23m1563232","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1254-1280, June 2025. <br/> Abstract. In the present paper, we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier–Stokes–Fourier system. The Monte Carlo method, frequently used for approximating statistical moments, is combined with a suitable deterministic discretization method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to the statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"38 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis of the Monte Carlo Method for the Random Navier–Stokes–Fourier System\",\"authors\":\"Mária Lukáčová-Medviďová, Bangwei She, Yuhuan Yuan\",\"doi\":\"10.1137/23m1563232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1254-1280, June 2025. <br/> Abstract. In the present paper, we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier–Stokes–Fourier system. The Monte Carlo method, frequently used for approximating statistical moments, is combined with a suitable deterministic discretization method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to the statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1563232\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1563232","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第3期,1254-1280页,2025年6月。摘要。本文考虑了可压缩Navier-Stokes-Fourier系统的初始数据、外力、粘度系数和导热系数作为随机数据。蒙特卡罗方法是一种常用的统计矩近似方法,它在物理空间和时间上与一种合适的确定性离散方法相结合。在假设数值密度和温度在概率上有界的情况下,应用真正的随机紧性论证证明了统计强解的随机有限体积解的收敛性。进一步,我们展示了期望和偏差的蒙特卡罗估计的收敛性和误差估计。我们给出了几个数值结果来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Analysis of the Monte Carlo Method for the Random Navier–Stokes–Fourier System
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1254-1280, June 2025.
Abstract. In the present paper, we consider the initial data, external force, viscosity coefficients, and heat conductivity coefficient as random data for the compressible Navier–Stokes–Fourier system. The Monte Carlo method, frequently used for approximating statistical moments, is combined with a suitable deterministic discretization method in physical space and time. Under the assumption that numerical densities and temperatures are bounded in probability, we prove the convergence of random finite volume solutions to the statistical strong solution by applying genuine stochastic compactness arguments. Further, we show the convergence and error estimates for Monte Carlo estimators of the expectation and deviation. We present several numerical results to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信