平稳Fokker-Planck-Kolmogorov方程的有限元逼近及其在周期数值均匀化中的应用

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Timo Sprekeler, Endre Süli, Zhiwen Zhang
{"title":"平稳Fokker-Planck-Kolmogorov方程的有限元逼近及其在周期数值均匀化中的应用","authors":"Timo Sprekeler, Endre Süli, Zhiwen Zhang","doi":"10.1137/24m1692848","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1315-1343, June 2025. <br/> Abstract. We propose and rigorously analyze a finite element method for the approximation of stationary Fokker–Planck–Kolmogorov (FPK) equations subject to periodic boundary conditions in two settings: one with weakly differentiable coefficients, and one with merely essentially bounded measurable coefficients under a Cordes-type condition. These problems arise as governing equations for the invariant measure in the homogenization of nondivergence-form equations with large drifts. In particular, the Cordes setting guarantees the existence and uniqueness of a square-integrable invariant measure. We then suggest and rigorously analyze an approximation scheme for the effective diffusion matrix in both settings based on the finite element scheme for stationary FPK problems developed in the first part. Finally, we demonstrate the performance of the methods through numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"100 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Approximation of Stationary Fokker–Planck–Kolmogorov Equations with Application to Periodic Numerical Homogenization\",\"authors\":\"Timo Sprekeler, Endre Süli, Zhiwen Zhang\",\"doi\":\"10.1137/24m1692848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1315-1343, June 2025. <br/> Abstract. We propose and rigorously analyze a finite element method for the approximation of stationary Fokker–Planck–Kolmogorov (FPK) equations subject to periodic boundary conditions in two settings: one with weakly differentiable coefficients, and one with merely essentially bounded measurable coefficients under a Cordes-type condition. These problems arise as governing equations for the invariant measure in the homogenization of nondivergence-form equations with large drifts. In particular, the Cordes setting guarantees the existence and uniqueness of a square-integrable invariant measure. We then suggest and rigorously analyze an approximation scheme for the effective diffusion matrix in both settings based on the finite element scheme for stationary FPK problems developed in the first part. Finally, we demonstrate the performance of the methods through numerical experiments.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1692848\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1692848","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第3期,第1315-1343页,2025年6月。摘要。在cordes型条件下,提出并严格分析了具有周期边界条件的平稳Fokker-Planck-Kolmogorov (FPK)方程在两种情况下的逼近方法:一种是弱可微系数,另一种是本质上有界可测系数。这些问题作为控制方程出现在具有大漂移的非发散形式方程的齐次化中的不变测度。特别地,Cordes集合保证了一个平方可积不变测度的存在唯一性。然后,我们提出并严格分析了两种情况下有效扩散矩阵的近似格式,该格式基于第一部分中开发的平稳FPK问题的有限元格式。最后,通过数值实验验证了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Approximation of Stationary Fokker–Planck–Kolmogorov Equations with Application to Periodic Numerical Homogenization
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1315-1343, June 2025.
Abstract. We propose and rigorously analyze a finite element method for the approximation of stationary Fokker–Planck–Kolmogorov (FPK) equations subject to periodic boundary conditions in two settings: one with weakly differentiable coefficients, and one with merely essentially bounded measurable coefficients under a Cordes-type condition. These problems arise as governing equations for the invariant measure in the homogenization of nondivergence-form equations with large drifts. In particular, the Cordes setting guarantees the existence and uniqueness of a square-integrable invariant measure. We then suggest and rigorously analyze an approximation scheme for the effective diffusion matrix in both settings based on the finite element scheme for stationary FPK problems developed in the first part. Finally, we demonstrate the performance of the methods through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信