Kolmogorov方程的一种利用亚矫直的稳定有限元法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Zhaonan Dong, Emmanuil H. Georgoulis, Philip J. Herbert
{"title":"Kolmogorov方程的一种利用亚矫直的稳定有限元法","authors":"Zhaonan Dong, Emmanuil H. Georgoulis, Philip J. Herbert","doi":"10.1137/24m163373x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1105-1127, June 2025. <br/> Abstract. We propose a new stabilized finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterized by degenerate diffusion. The stabilization is constructed so that the resulting method admits a numerical hypocoercivity property, analogous to the corresponding property of the PDE problem. More specifically, the stabilization is constructed so that a spectral gap is possible in the resulting “stronger-than-energy” stabilization norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behavior as the “time” variable goes to infinity. We consider both a spatially discrete version of the stabilized finite element method and a fully discrete version, with the time discretization realized by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"43 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hypocoercivity-Exploiting Stabilized Finite Element Method for Kolmogorov Equation\",\"authors\":\"Zhaonan Dong, Emmanuil H. Georgoulis, Philip J. Herbert\",\"doi\":\"10.1137/24m163373x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1105-1127, June 2025. <br/> Abstract. We propose a new stabilized finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterized by degenerate diffusion. The stabilization is constructed so that the resulting method admits a numerical hypocoercivity property, analogous to the corresponding property of the PDE problem. More specifically, the stabilization is constructed so that a spectral gap is possible in the resulting “stronger-than-energy” stabilization norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behavior as the “time” variable goes to infinity. We consider both a spatially discrete version of the stabilized finite element method and a fully discrete version, with the time discretization realized by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m163373x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m163373x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,63卷,第3期,1105-1127页,2025年6月。摘要。针对经典Kolmogorov方程,提出了一种新的稳定有限元方法。后者作为大类别动力学型方程的基本模型问题,并且至关重要的是,具有退化扩散的特征。构造了稳定性,使所得到的方法具有数值上的低矫顽力性质,类似于PDE问题的相应性质。更具体地说,尽管在Kolmogorov中扩散具有退化性质,但稳定化构造使得在所得到的“强于能量”稳定化范数中可能存在谱间隙,因此该方法在“时间”变量趋于无穷时具有可证明的鲁棒性。我们考虑了稳定有限元法的空间离散版本和完全离散版本,时间离散化是通过不连续伽辽金时间步进实现的。在所有情况下都证明了稳定性和先验误差范围。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hypocoercivity-Exploiting Stabilized Finite Element Method for Kolmogorov Equation
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1105-1127, June 2025.
Abstract. We propose a new stabilized finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterized by degenerate diffusion. The stabilization is constructed so that the resulting method admits a numerical hypocoercivity property, analogous to the corresponding property of the PDE problem. More specifically, the stabilization is constructed so that a spectral gap is possible in the resulting “stronger-than-energy” stabilization norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behavior as the “time” variable goes to infinity. We consider both a spatially discrete version of the stabilized finite element method and a fully discrete version, with the time discretization realized by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信