Zhaonan Dong, Emmanuil H. Georgoulis, Philip J. Herbert
{"title":"Kolmogorov方程的一种利用亚矫直的稳定有限元法","authors":"Zhaonan Dong, Emmanuil H. Georgoulis, Philip J. Herbert","doi":"10.1137/24m163373x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1105-1127, June 2025. <br/> Abstract. We propose a new stabilized finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterized by degenerate diffusion. The stabilization is constructed so that the resulting method admits a numerical hypocoercivity property, analogous to the corresponding property of the PDE problem. More specifically, the stabilization is constructed so that a spectral gap is possible in the resulting “stronger-than-energy” stabilization norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behavior as the “time” variable goes to infinity. We consider both a spatially discrete version of the stabilized finite element method and a fully discrete version, with the time discretization realized by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"43 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hypocoercivity-Exploiting Stabilized Finite Element Method for Kolmogorov Equation\",\"authors\":\"Zhaonan Dong, Emmanuil H. Georgoulis, Philip J. Herbert\",\"doi\":\"10.1137/24m163373x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1105-1127, June 2025. <br/> Abstract. We propose a new stabilized finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterized by degenerate diffusion. The stabilization is constructed so that the resulting method admits a numerical hypocoercivity property, analogous to the corresponding property of the PDE problem. More specifically, the stabilization is constructed so that a spectral gap is possible in the resulting “stronger-than-energy” stabilization norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behavior as the “time” variable goes to infinity. We consider both a spatially discrete version of the stabilized finite element method and a fully discrete version, with the time discretization realized by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m163373x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m163373x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Hypocoercivity-Exploiting Stabilized Finite Element Method for Kolmogorov Equation
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1105-1127, June 2025. Abstract. We propose a new stabilized finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterized by degenerate diffusion. The stabilization is constructed so that the resulting method admits a numerical hypocoercivity property, analogous to the corresponding property of the PDE problem. More specifically, the stabilization is constructed so that a spectral gap is possible in the resulting “stronger-than-energy” stabilization norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behavior as the “time” variable goes to infinity. We consider both a spatially discrete version of the stabilized finite element method and a fully discrete version, with the time discretization realized by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.