麦克斯韦方程组的完全辐射边界条件分析

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Seungil Kim
{"title":"麦克斯韦方程组的完全辐射边界条件分析","authors":"Seungil Kim","doi":"10.1137/24m1663417","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1183-1208, June 2025. <br/> Abstract. We study a high order absorbing boundary condition, the so-called complete radiation boundary condition (CRBC), for a time-harmonic electromagnetic wave propagation problem in a waveguide in [math]. The CRBC has been designed for an absorbing boundary condition for simulating wave propagations governed by the Helmholtz equation based on an optimal rational approximation to the radiation condition. In this paper we develop CRBC suitable for Maxwell’s equations and show the well-posedness of Maxwell’s equations supplemented with CRBC by using a shifted electric-to-magnetic operator taking into account a separation between sources and the fictitious boundary on which CRBC is imposed. This also leads to the exponential convergence of approximate solutions satisfying CRBC with respect to the number of CRBC parameters. Numerical examples to validate the efficient performance of CRBC will be presented as well.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"27 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Complete Radiation Boundary Conditions for Maxwell’s Equations\",\"authors\":\"Seungil Kim\",\"doi\":\"10.1137/24m1663417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1183-1208, June 2025. <br/> Abstract. We study a high order absorbing boundary condition, the so-called complete radiation boundary condition (CRBC), for a time-harmonic electromagnetic wave propagation problem in a waveguide in [math]. The CRBC has been designed for an absorbing boundary condition for simulating wave propagations governed by the Helmholtz equation based on an optimal rational approximation to the radiation condition. In this paper we develop CRBC suitable for Maxwell’s equations and show the well-posedness of Maxwell’s equations supplemented with CRBC by using a shifted electric-to-magnetic operator taking into account a separation between sources and the fictitious boundary on which CRBC is imposed. This also leads to the exponential convergence of approximate solutions satisfying CRBC with respect to the number of CRBC parameters. Numerical examples to validate the efficient performance of CRBC will be presented as well.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1663417\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1663417","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第3期,第1183-1208页,2025年6月。摘要。本文研究了波导中时谐电磁波传播问题的高阶吸收边界条件,即完全辐射边界条件(CRBC)。基于对辐射条件的最优有理近似,设计了用于模拟由亥姆霍兹方程控制的波传播的吸收边界条件的CRBC。在本文中,我们开发了适用于麦克斯韦方程组的CRBC,并利用考虑源间分离和施加CRBC的虚拟边界的移位电-磁算子,证明了麦克斯韦方程组补充CRBC的适定性。这也导致满足CRBC的近似解相对于CRBC参数的数量呈指数收敛。数值实例验证了CRBC的高效性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Complete Radiation Boundary Conditions for Maxwell’s Equations
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1183-1208, June 2025.
Abstract. We study a high order absorbing boundary condition, the so-called complete radiation boundary condition (CRBC), for a time-harmonic electromagnetic wave propagation problem in a waveguide in [math]. The CRBC has been designed for an absorbing boundary condition for simulating wave propagations governed by the Helmholtz equation based on an optimal rational approximation to the radiation condition. In this paper we develop CRBC suitable for Maxwell’s equations and show the well-posedness of Maxwell’s equations supplemented with CRBC by using a shifted electric-to-magnetic operator taking into account a separation between sources and the fictitious boundary on which CRBC is imposed. This also leads to the exponential convergence of approximate solutions satisfying CRBC with respect to the number of CRBC parameters. Numerical examples to validate the efficient performance of CRBC will be presented as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信