双调和波映射到球中的数值逼近

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
L’ubomír Baňas, Sebastian Herr
{"title":"双调和波映射到球中的数值逼近","authors":"L’ubomír Baňas, Sebastian Herr","doi":"10.1137/24m1694471","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1160-1182, June 2025. <br/> Abstract. We construct a structure preserving nonconforming finite element approximation scheme for the biharmonic wave maps into spheres equations. It satisfies a discrete energy law and preserves the nonconvex sphere constraint of the continuous problem. The discrete sphere constraint is enforced at the mesh-points via a discrete Lagrange multiplier. This approach restricts the spatial approximation to the (nonconforming) linear finite elements. We show that the numerical approximation converges to the weak solution of the continuous problem in spatial dimension [math]. The convergence analysis in dimensions [math] is complicated by the lack of a discrete product rule as well as the low regularity of the numerical approximation in the nonconforming setting. Hence, we show convergence of the numerical approximation in higher dimensions by introducing additional stabilization terms in the numerical approximation. We present numerical experiments to demonstrate the performance of the proposed numerical approximation and to illustrate the regularizing effect of the bi-Laplacian, which prevents the formation of singularities.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Approximation of Biharmonic Wave Maps into Spheres\",\"authors\":\"L’ubomír Baňas, Sebastian Herr\",\"doi\":\"10.1137/24m1694471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1160-1182, June 2025. <br/> Abstract. We construct a structure preserving nonconforming finite element approximation scheme for the biharmonic wave maps into spheres equations. It satisfies a discrete energy law and preserves the nonconvex sphere constraint of the continuous problem. The discrete sphere constraint is enforced at the mesh-points via a discrete Lagrange multiplier. This approach restricts the spatial approximation to the (nonconforming) linear finite elements. We show that the numerical approximation converges to the weak solution of the continuous problem in spatial dimension [math]. The convergence analysis in dimensions [math] is complicated by the lack of a discrete product rule as well as the low regularity of the numerical approximation in the nonconforming setting. Hence, we show convergence of the numerical approximation in higher dimensions by introducing additional stabilization terms in the numerical approximation. We present numerical experiments to demonstrate the performance of the proposed numerical approximation and to illustrate the regularizing effect of the bi-Laplacian, which prevents the formation of singularities.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1694471\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1694471","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第3期,第1160-1182页,2025年6月。摘要。构造了双调和波映射成球方程的结构保持非协调有限元近似格式。它满足离散能量律,并保持连续问题的非凸球约束。离散球面约束通过离散拉格朗日乘子在网格点上实现。这种方法将空间逼近限制在(非一致性)线性有限元上。我们证明了数值近似收敛于空间维度连续问题的弱解[数学]。由于缺乏离散乘积规则以及不符合条件下数值近似的低规律性,使得维数[数学]上的收敛分析变得复杂。因此,我们通过在数值近似中引入附加的稳定项来证明数值近似在高维上的收敛性。我们提出了数值实验来证明所提出的数值近似的性能,并说明了双拉普拉斯算子的正则化效果,它可以防止奇点的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Approximation of Biharmonic Wave Maps into Spheres
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1160-1182, June 2025.
Abstract. We construct a structure preserving nonconforming finite element approximation scheme for the biharmonic wave maps into spheres equations. It satisfies a discrete energy law and preserves the nonconvex sphere constraint of the continuous problem. The discrete sphere constraint is enforced at the mesh-points via a discrete Lagrange multiplier. This approach restricts the spatial approximation to the (nonconforming) linear finite elements. We show that the numerical approximation converges to the weak solution of the continuous problem in spatial dimension [math]. The convergence analysis in dimensions [math] is complicated by the lack of a discrete product rule as well as the low regularity of the numerical approximation in the nonconforming setting. Hence, we show convergence of the numerical approximation in higher dimensions by introducing additional stabilization terms in the numerical approximation. We present numerical experiments to demonstrate the performance of the proposed numerical approximation and to illustrate the regularizing effect of the bi-Laplacian, which prevents the formation of singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信