{"title":"Provably Convergent Newton–Raphson Method: Theoretically Robust Recovery of Primitive Variables in Relativistic MHD","authors":"Chaoyi Cai, Jianxian Qiu, Kailiang Wu","doi":"10.1137/24m1651873","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1128-1159, June 2025. <br/> Abstract. A long-standing and formidable challenge faced by all conservative numerical schemes for relativistic magnetohydrodynamics (RMHD) equations is the recovery of primitive variables from conservative ones. This process involves solving highly nonlinear equations subject to physical constraints. An ideal solver should be “robust, accurate, and fast—it is at the heart of all conservative RMHD schemes,” as emphasized in [S. C. Noble et al., Astrophys. J., 641 (2006), pp. 626–637]. Despite over three decades of research, seeking efficient solvers that can provably guarantee stability and convergence remains an open problem. This paper presents the first theoretical analysis for designing a robust, physical-constraint-preserving (PCP), and provably (quadratically) convergent Newton–Raphson (NR) method for primitive variable recovery in RMHD. Our key innovation is a unified approach for the initial guess, carefully devised based on sophisticated analysis. It ensures that the resulting NR iteration consistently converges and adheres to physical constraints throughout all NR iterations. Given the extreme nonlinearity and complexity of the iterative function, the theoretical analysis is highly nontrivial and technical. We discover a pivotal inequality for delineating the convexity and concavity of the iterative function and establish general auxiliary theories to guarantee the PCP property and convergence. We also develop theories to determine a computable initial guess within a theoretical “safe” interval. Intriguingly, we find that the unique positive root of a cubic polynomial always falls within this “safe” interval. To enhance efficiency, we propose a hybrid strategy that combines this with a more cost-effective initial value. The presented PCP NR method is versatile and can be seamlessly integrated into any RMHD numerical scheme that requires the recovery of primitive variables, potentially leading to a very broad impact in this field. As an application, we incorporate it into a discontinuous Galerkin method, resulting in fully PCP schemes. Several numerical experiments, including random tests and simulations of ultrarelativistic jet and blast problems, demonstrate the notable efficiency and robustness of the PCP NR method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"30 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1651873","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1128-1159, June 2025. Abstract. A long-standing and formidable challenge faced by all conservative numerical schemes for relativistic magnetohydrodynamics (RMHD) equations is the recovery of primitive variables from conservative ones. This process involves solving highly nonlinear equations subject to physical constraints. An ideal solver should be “robust, accurate, and fast—it is at the heart of all conservative RMHD schemes,” as emphasized in [S. C. Noble et al., Astrophys. J., 641 (2006), pp. 626–637]. Despite over three decades of research, seeking efficient solvers that can provably guarantee stability and convergence remains an open problem. This paper presents the first theoretical analysis for designing a robust, physical-constraint-preserving (PCP), and provably (quadratically) convergent Newton–Raphson (NR) method for primitive variable recovery in RMHD. Our key innovation is a unified approach for the initial guess, carefully devised based on sophisticated analysis. It ensures that the resulting NR iteration consistently converges and adheres to physical constraints throughout all NR iterations. Given the extreme nonlinearity and complexity of the iterative function, the theoretical analysis is highly nontrivial and technical. We discover a pivotal inequality for delineating the convexity and concavity of the iterative function and establish general auxiliary theories to guarantee the PCP property and convergence. We also develop theories to determine a computable initial guess within a theoretical “safe” interval. Intriguingly, we find that the unique positive root of a cubic polynomial always falls within this “safe” interval. To enhance efficiency, we propose a hybrid strategy that combines this with a more cost-effective initial value. The presented PCP NR method is versatile and can be seamlessly integrated into any RMHD numerical scheme that requires the recovery of primitive variables, potentially leading to a very broad impact in this field. As an application, we incorporate it into a discontinuous Galerkin method, resulting in fully PCP schemes. Several numerical experiments, including random tests and simulations of ultrarelativistic jet and blast problems, demonstrate the notable efficiency and robustness of the PCP NR method.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.