{"title":"Isogeometric flutter analysis of a heated laminated plate with and without cutout","authors":"Wenliang Yu , Rongshen Guo , Yuhao Zhao , Mingfei Chen","doi":"10.1016/j.tws.2024.112652","DOIUrl":"10.1016/j.tws.2024.112652","url":null,"abstract":"<div><div>Understanding the flutter characteristics of heated laminated plates, both with and without cutout, is crucial. This study presents the first exploration of flutter analysis in a thermal environment for a laminated plate featuring a cutout. To facilitate this study, the motion equations of the heated laminated plate with a cutout are derived using the first-order shear deformation theory (FSDT), incorporating a nonlinear term. Employing the isogeometric method combined with multi-path coupling technology, we establish accurate geometric and solution domains for the laminated plate. The effects of the thermal stresses and the aerodynamics calculated by the linear piston theory are considered. The accuracy and effectiveness of the proposed model are validated through several comparisons with ANSYS results and existing solutions. Additionally, the study examines the impact of key parameters on flutter characteristics, including thermal conditions, number of layers, lay-up angles, inflow angles, and cutout dimensions. The insights gained from this research will serve as a valuable benchmark for future analyses and design concerning flutter characteristics.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112652"},"PeriodicalIF":5.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Su , Jin Di , Xuhong Zhou , Bin Han , Fengjiang Qin , Long Hu , Jie Wang
{"title":"Experimental investigation on hysteretic properties and applications in beam-column connections of shape memory alloy plates","authors":"Yi Su , Jin Di , Xuhong Zhou , Bin Han , Fengjiang Qin , Long Hu , Jie Wang","doi":"10.1016/j.tws.2024.112650","DOIUrl":"10.1016/j.tws.2024.112650","url":null,"abstract":"<div><div>Shape memory alloy (SMA) plates have demonstrate significant application prospects in seismic structures owing to their excellent mechanical behaviour and section adaptability. In this study, the mechanical properties and manifestations of SMA plates, particularly their cyclic tension-release behaviour, were systematically investigated. Analysis results of peak strength, self-centring capacity, and energy dissipation capacity showed that thickness, temperature, and loading protocol affect the hysteretic properties of SMA plates. Furthermore, an effective training scheme of constant 4 % tensile strain, which can significantly increase the ultimate strength and self-centring capacity, was suggested for SMA plates to withstand cyclic tensile loads. Subsequently, a beam-column connection equipped with SMA plates was designed, and a set of quasi-static tests and numerical validations were conducted. The results verified the excellent self-centring capacity of the SMA plates, and the superiority and potential of applying SMA plate to aseismic structures were confirmed. Simultaneously, the SMA plates exhibited a lower energy dissipation capacity than the commonly used Q160 and ALA plates, which indicates that paralleling with other energy dissipation members is beneficial for improving the hysteretic properties of structures.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112650"},"PeriodicalIF":5.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and numerical investigation on cyclic behavior of Q1100 ultra-high strength steel H-section compressive-bending members about strong-axis","authors":"Yun Zhang, Lu Yang, Kelong Xu","doi":"10.1016/j.tws.2024.112651","DOIUrl":"10.1016/j.tws.2024.112651","url":null,"abstract":"<div><div>Q1100 refers to ultra-high strength steel (UHSS) with a nominal yield strength of 1100 MPa. Hysteretic tests were conducted on seven Q1100 UHSS H-section welded columns to assess their hysteretic performance. The hysteretic performance was evaluated through hysteresis curves, damage phenomena, energy dissipation, ductility, and load-carrying capacity. The impact of the width-to-thickness ratio and axial pressure ratio on the hysteretic behavior was also investigated. A validated finite element model was utilized to analyze the hysteresis behavior, influencing factors, and the applicability of Eurocode 3 width-to-thickness ratio limits, resulting in proposed seismic design recommendations.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112651"},"PeriodicalIF":5.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A rationalized macroscopic failure criterion of composite woven fabrics for airship structures","authors":"Longlong Chen, Wujun Chen","doi":"10.1016/j.tws.2024.112647","DOIUrl":"10.1016/j.tws.2024.112647","url":null,"abstract":"<div><div>Composite woven fabrics are increasingly employed in architecture and aerospace for their excellent properties, such as lightweight, high specific strength, large surface area, and satisfactory deployability. The strength behavior is essential for various membrane structures as structural failure is serious. However, an accurate, simplified, and universal failure criterion has not been reported due to the inherent complexities of composite woven fabrics. This paper thus studies the tensile strength behaviors of airship fabrics and proposes a rationalized macroscopic failure criterion (Chen-Chen criterion) based on theoretical analysis and experimental observations. The generalized Chen-Chen criterion inherently satisfies the conditions of symmetry, dimensionless, and uniaxial tensile strength (UTS) boundary, with a maximum absolute deviation of only 1.34 % for two airship fabrics. Additionally, the UTS-based criteria were derived particularly for flexible plain-weave polyesters to avoid laborious and costly biaxial strength tests. The average deviations of constant and linear Chen-Chen criteria are 6.01 %, 4.91 %, while that of the Norris criterion reaches 13.34 %. Furthermore, the numerical implementation of the Chen-Chen criterion was demonstrated by biaxial tensile simulations. The failure strength and location predicted by the numerical analysis show good consistency with the experimental results.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112647"},"PeriodicalIF":5.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Zhao , Chenchen Lian , Wenxu Zhang , Hongfei Zhang , Tao Zhang , Peiyan Wang , Zhufeng Yue
{"title":"Test and simulation of high temperature resistant polyamide composite with single lap single bolt connection","authors":"Wei Zhao , Chenchen Lian , Wenxu Zhang , Hongfei Zhang , Tao Zhang , Peiyan Wang , Zhufeng Yue","doi":"10.1016/j.tws.2024.112649","DOIUrl":"10.1016/j.tws.2024.112649","url":null,"abstract":"<div><div>The advancement of next-generation aerospace vehicles has presented new requirements and challenges for ensuring the structural integrity of aircraft components in extreme environments. Consequently, the utilization of high temperature resistant polyamide composite materials has become pivotal in the manufacturing of aerospace vehicle parts that operate under high temperatures (250 °C). As a critical connection technology for these materials, the mechanical behavior of bolted connection structures under high temperatures requires further investigation. In this paper, a combination of experimental and numerical simulation is used to investigate the load carrying capacity and failure mechanism of T700/BMP316 composite bolted joints at room temperature and 250 °C. The experimental results show that the ultimate load carrying capacity of the structure at 250 °C is only 13.1 % lower than that of the room temperature environment, indicating that the temperature softening effect of such composites is not significant. Scanning electron microscope (SEM) and computed tomography (CT) results indicate that the structural damage modes were the crushing of the hole edge fibers and matrix due to the extrusion by the bolts, as well as the interlaminar delamination damage. Temperature effects were taken into account for the composite principal structure and finite element modeling was performed using a combination of Pinho criterion and Cohesive model. Numerical simulations allow accurate prediction of the load-displacement response and damage pattern throughout the damage evolution phase. The high temperature test results and the developed finite element model involved in this study can support the design of new-generation aerospace vehicles.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112649"},"PeriodicalIF":5.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stretch-induced wrinkling analysis and experimental validation of creased membranes","authors":"Wang Zhong, Baoyan Duan, Jingli Du","doi":"10.1016/j.tws.2024.112644","DOIUrl":"10.1016/j.tws.2024.112644","url":null,"abstract":"<div><div>Creases and wrinkles are crucial factors affecting the accuracy of membrane structures. In this paper, we study the stretch-induced wrinkling of creased membrane based on a proposed planar crease model by characterizing the crease as an orthotropic rigid strip with effective bending stiffness and initial stress. A control equation of wrinkling of a stretched rectangular membrane with a vertical crease is deduced to understand the crease-wrinkle interaction. Then, a set of scaling laws for the wrinkles is discussed in detail, and it is concluded that the ratio of the bending stiffness of the crease to that of the membrane is the key influence factor. Furthermore, the analysis reveals that wrinkling in the small-strain stage is a localized wrinkling behavior independent of the crease parameters. The wrinkling wavelength and amplitude at large strains decrease with increasing crease angle. Finally, experiments verify the correctness and validity of the theoretical model and analytical method.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112644"},"PeriodicalIF":5.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shear buckling behaviour of beams with partial-depth stiffeners at the support","authors":"Gábor Hajdú , Hartmut Pasternak","doi":"10.1016/j.tws.2024.112622","DOIUrl":"10.1016/j.tws.2024.112622","url":null,"abstract":"<div><div>This paper presents the findings from experimental tests and numerical simulations on plate girders with various end post configurations. While EN 1993-1-5:2024 provides design rules for both rigid and non-rigid end posts, it does not address the shear resistance of partially stiffened webs. The use of partial-depth stiffeners faces risks due to the lack of thorough investigation into their mechanical behaviour. To explore this issue, small numbered experimental tests and large numbered parametric studies on beams with different web slenderness were conducted using advanced numerical simulations. The results indicated that the shear buckling capacity of girders is lower than the design recommendation when the web stiffener height is <50 % of the web height. For girders with full-height stiffeners, EN 1993-1-5:2024 yields safe results. The accuracy of the EN 1993-1-5:2024 design rule for partially stiffened beams was also evaluated and new and shear buckling design curves were proposed for girders with partial-depth stiffeners.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"207 ","pages":"Article 112622"},"PeriodicalIF":5.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rusheng Zhao , Shiyue Guo , Jian Wang , Bin Li , Fan Zhang , Donggen Yang , Xuezheng Yue , Xiangyu Guo , Huiling Tang
{"title":"Enhanced energy absorption and mechanical properties of porous Ti-6Al-4 V alloys with gradient disordered cells fabricated by laser powder bed fusion","authors":"Rusheng Zhao , Shiyue Guo , Jian Wang , Bin Li , Fan Zhang , Donggen Yang , Xuezheng Yue , Xiangyu Guo , Huiling Tang","doi":"10.1016/j.tws.2024.112632","DOIUrl":"10.1016/j.tws.2024.112632","url":null,"abstract":"<div><div>Additive manufacturing (AM) has revolutionized the production of porous metals, greatly improving control over their structural properties and offering unprecedented advantages in lightweight applications and energy absorption. Balancing energy absorption and compressive strength in ordered and disordered porous structures is challenging due to shear deformation and deformation mechanisms. This study investigates the mechanical and energy absorption properties of porous Ti-6Al-4 V alloys with gradient disordered cells fabricated using laser powder bed fusion (LPBF). The compressive response of samples with different regularities (<em>R</em>) and varying layers of disordered cells was analyzed through quasi-static compression experiments and finite element simulations. The results indicate that introducing a disordered cell gradient significantly enhances energy absorption by preventing the formation of shear bands observed in porous structures with ordered cell structures. When the regularity (<em>R</em>) is 0.8, 0.4, and 0.2 with one or two layers of disordered cells, mechanical properties are optimized and characterized by a balance between compressive strength and energy absorption. It is significant that, while preserving or enhancing compressive strength, the energy absorption of the material can be augmented substantially. Specifically, porous Ti-6Al-4 V (<em>R</em> = 0.8, <em>L4</em>) achieves an energy absorption increase of up to 154.9kJ/m³, which represents a dramatic enhancement of approximately 245.0 % over the regular porous structure (<em>R</em> = 0 or <em>L0</em>), which absorbs only 44.9 kJ/m³. Compared to ordered and disordered porous structures, the disordered cell gradient demonstrates significant potential in tuning the mechanical properties of porous metals, thereby advancing their applications in aerospace, biomedical, and protective fields.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112632"},"PeriodicalIF":5.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and evaluation on residual impact resistance of CFST composite frames under column removal scenario","authors":"Jing-Xuan Wang , Han-Jun Li , Shan Gao","doi":"10.1016/j.tws.2024.112624","DOIUrl":"10.1016/j.tws.2024.112624","url":null,"abstract":"<div><div>To investigate and evaluate the dynamic response and residual impact resistance of CFST (concrete-filled steel tubular) composite frames after the failure of vertical load-resisting components, two 1/4-scaled two-storey and two-span CFST composite subframes under the penultimate column and corner column failure conditions were tested in three consecutive impacts. The tests results show that the substructures under the penultimate column and corner column failure conditions after being statically loaded to 360 mm can both resist the three consecutive impacts. The aggravation of the cracks of the steel beams and the crush of the concrete slabs at the connections area were observed after the impacts. As the impact energy of three impacts increases, the average impact force of both two specimens increases and the substructure with penultimate column failure shows better anti-impact capacity than the specimen with corner column failure. The finite element model analysis shows that the damage and energy consumption of the structures under impact loading primarily concentrate on the failed span and the impacted storey, where the ring plate connections are the most dominant energy-consuming components. Over 75 % of the impact resistance is provided by the flexural action of the composite beams. After being statically loaded to 360 mm, the structures can still resist the impacts which equal to 20.7 % and 18.5 % of the mass of the upper slab in the structures with the penultimate column and corner column failure, respectively. Additionally, a simplified prediction method is proposed for the residual anti-impact energy-consuming capacity of the substructures with column failure which is found to be negatively linearly related to the initial vertical displacement.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112624"},"PeriodicalIF":5.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongsheng Shi , Yanhui Qie , Jinhua Song , Yutong Li
{"title":"An equivalent average shear stress yield criterion based on Simpson's numerical integration rule and its application in burst pressure analysis of thin-walled pipelines","authors":"Yongsheng Shi , Yanhui Qie , Jinhua Song , Yutong Li","doi":"10.1016/j.tws.2024.112613","DOIUrl":"10.1016/j.tws.2024.112613","url":null,"abstract":"<div><div>Pipelines are a crucial transportation infrastructure for the long-distance transport of natural gas, oil, and other hydrocarbons, typically conducted through thin-walled pipes (<span><math><mrow><mi>D</mi><mo>/</mo><mi>t</mi><mo>≥</mo><mn>20</mn></mrow></math></span>). Accurate prediction of the burst pressure of thin-walled pipelines is essential for their safe and reliable operation. To enhance the prediction accuracy of the burst pressure for defect-free, straight, thin-walled pipes, a new numerical integration yield criterion was proposed between the Tresca and Mises criteria, using the mean value of Simpson's numerical integration (MSI) as the equivalent shear stress. A new burst pressure prediction formula was then constructed using the MSI yield criterion. The burst pressure predictions based on different yield criteria were compared with experimental data. Additionally, the burst pressure curves of the new prediction formula were plotted, and the relative errors between the new prediction formula and four existing prediction formulas were analyzed and compared. The results indicate that the new burst pressure prediction formula using the MSI yield criterion closely matches the experimental data, with the best relative error result within a confidence interval of ±1.3 %. The Lord parameter curve and plane stress curve of the MSI yield criterion exhibit good consistency with the experimental data of various ductile metal materials. The new burst pressure formula established by incorporating the MSI criterion provides a safe, economical, and reliable theoretical foundation for the design, manufacture, inspection, and safety assessment of thin-walled pipelines in production practice.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112613"},"PeriodicalIF":5.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}