Fangzheng Liu , Zhiqi Zhao , Liusheng Xiao , Ruidong Zhou , Qi Liu , Ding Rong Ou , Jinliang Yuan
{"title":"具有功能梯度燃料电极的固体氧化物电解电池的多物理场分析与优化","authors":"Fangzheng Liu , Zhiqi Zhao , Liusheng Xiao , Ruidong Zhou , Qi Liu , Ding Rong Ou , Jinliang Yuan","doi":"10.1016/j.tws.2025.113936","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a multiphysics CFD model to understand and analyze hydrogen production and thermal stress in anode-supported planar solid oxide electrolysis cells (SOECs), which employ functionally graded fuel electrodes with engineered linear gradients in porosity, pore size, and Ni composition along the electrode thickness direction. Moreover, orthogonal experimental design method is also developed and applied to identify the optimal parameter ranges, and the graded porosity is found to be the dominant factor enhancing hydrogen production, while the graded Ni composition is the primary parameter governing the maximum thermal stress. Synergistic optimization of porosity and Ni composition gradients achieves a 24.9% increase in the hydrogen production with a 10.0% reduction in the maximum thermal stress, demonstrating their critical role in concurrently boosting SOEC performance and mechanical durability.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 113936"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphysics analysis and optimization of solid oxide electrolysis cells with functionally graded fuel electrodes\",\"authors\":\"Fangzheng Liu , Zhiqi Zhao , Liusheng Xiao , Ruidong Zhou , Qi Liu , Ding Rong Ou , Jinliang Yuan\",\"doi\":\"10.1016/j.tws.2025.113936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a multiphysics CFD model to understand and analyze hydrogen production and thermal stress in anode-supported planar solid oxide electrolysis cells (SOECs), which employ functionally graded fuel electrodes with engineered linear gradients in porosity, pore size, and Ni composition along the electrode thickness direction. Moreover, orthogonal experimental design method is also developed and applied to identify the optimal parameter ranges, and the graded porosity is found to be the dominant factor enhancing hydrogen production, while the graded Ni composition is the primary parameter governing the maximum thermal stress. Synergistic optimization of porosity and Ni composition gradients achieves a 24.9% increase in the hydrogen production with a 10.0% reduction in the maximum thermal stress, demonstrating their critical role in concurrently boosting SOEC performance and mechanical durability.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"218 \",\"pages\":\"Article 113936\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823125010250\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125010250","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Multiphysics analysis and optimization of solid oxide electrolysis cells with functionally graded fuel electrodes
This study presents a multiphysics CFD model to understand and analyze hydrogen production and thermal stress in anode-supported planar solid oxide electrolysis cells (SOECs), which employ functionally graded fuel electrodes with engineered linear gradients in porosity, pore size, and Ni composition along the electrode thickness direction. Moreover, orthogonal experimental design method is also developed and applied to identify the optimal parameter ranges, and the graded porosity is found to be the dominant factor enhancing hydrogen production, while the graded Ni composition is the primary parameter governing the maximum thermal stress. Synergistic optimization of porosity and Ni composition gradients achieves a 24.9% increase in the hydrogen production with a 10.0% reduction in the maximum thermal stress, demonstrating their critical role in concurrently boosting SOEC performance and mechanical durability.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.