Wei Wang , Gaofei Guan , Lide Chen , Jiabin Sun , Zhenhuan Zhou , Xinsheng Xu
{"title":"A novel nonlinear stability modeling of mechanical-electro-carrier coupling piezoelectric semiconductor cylindrical shells","authors":"Wei Wang , Gaofei Guan , Lide Chen , Jiabin Sun , Zhenhuan Zhou , Xinsheng Xu","doi":"10.1016/j.tws.2025.113937","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric semiconductors (PS) shell-like structures have great potential for the manufacture of innovative devices, such as nano sensors. To evaluate stability of such devices, a novel mechanical-electro-carrier (MEC) coupling PS cylindrical shell (PSCS) post-buckling model is developed based on the high-order shear deformation shell theory (HSDT). By applying the Galerkin technique in conjunction with newly developed trial functions, the mode-jumping equilibrium path, post-buckling deformation, distributions of electron concentration and electric potential are determined. The effects of crucial influencing parameters, including geometrical parameters, semiconductors constants and voltages on nonlinear stability of PSCS, are explored. Numerical findings reveal that, as a consequence of the MEC coupling effect, both the bifurcation point (first buckling) and load-bearing capacity of PSCS are reduced compared to those of classical piezoelectric counterpart.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 113937"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125010262","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric semiconductors (PS) shell-like structures have great potential for the manufacture of innovative devices, such as nano sensors. To evaluate stability of such devices, a novel mechanical-electro-carrier (MEC) coupling PS cylindrical shell (PSCS) post-buckling model is developed based on the high-order shear deformation shell theory (HSDT). By applying the Galerkin technique in conjunction with newly developed trial functions, the mode-jumping equilibrium path, post-buckling deformation, distributions of electron concentration and electric potential are determined. The effects of crucial influencing parameters, including geometrical parameters, semiconductors constants and voltages on nonlinear stability of PSCS, are explored. Numerical findings reveal that, as a consequence of the MEC coupling effect, both the bifurcation point (first buckling) and load-bearing capacity of PSCS are reduced compared to those of classical piezoelectric counterpart.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.