Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.2033
Cécile Huneau, Annalaura Stingo
{"title":"Global well-posedness for a system of quasilinear wave equations on a product space","authors":"Cécile Huneau, Annalaura Stingo","doi":"10.2140/apde.2024.17.2033","DOIUrl":"https://doi.org/10.2140/apde.2024.17.2033","url":null,"abstract":"<p>We consider a system of quasilinear wave equations on the product space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup>\u0000<mo>×</mo> <msup><mrow><mi mathvariant=\"double-struck\">𝕊</mi></mrow><mrow><mn>1</mn></mrow></msup> </math>, which we want to see as a toy model for the Einstein equations with additional compact dimensions. We show global existence of solutions for small and regular initial data with polynomial decay at infinity. The method combines energy estimates on hyperboloids inside the light cone and weighted energy estimates outside the light cone. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.2179
Bo Berndtsson, Vlassis Mastrantonis, Yanir A. Rubinstein
{"title":"Lp-polarity, Mahler volumes, and the isotropic constant","authors":"Bo Berndtsson, Vlassis Mastrantonis, Yanir A. Rubinstein","doi":"10.2140/apde.2024.17.2179","DOIUrl":"https://doi.org/10.2140/apde.2024.17.2179","url":null,"abstract":"<p>This article introduces <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> versions of the support function of a convex body <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math> and associates to these canonical <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-polar bodies <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>K</mi></mrow><mrow><mo>∘</mo><mo>,</mo><mi>p</mi></mrow></msup></math> and Mahler volumes <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math>. Classical polarity is then seen as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math>-polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers for each <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\u0000<mo>∈</mo>\u0000<mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo stretchy=\"false\">)</mo></math>. We settle the upper bound by demonstrating the existence and uniqueness of an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló point and an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló inequality for symmetric convex bodies. The proof uses Ball’s Brunn–Minkowski inequality for harmonic means, the classical Brunn–Minkowski inequality, symmetrization, and a systematic study of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> functionals. Using our results on the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Santaló point and a new observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced to lower bounds on the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-Mahler volume coupled with a certain conjectural convexity property of the logarithm of the Monge–Ampère measure of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math>-support function. We derive a suboptimal version of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to ","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.2011
Laura Cladek, Benjamin Krause
{"title":"Improved endpoint bounds for the lacunary spherical maximal operator","authors":"Laura Cladek, Benjamin Krause","doi":"10.2140/apde.2024.17.2011","DOIUrl":"https://doi.org/10.2140/apde.2024.17.2011","url":null,"abstract":"<p>We prove new endpoint bounds for the lacunary spherical maximal operator and as a consequence obtain almost everywhere pointwise convergence of lacunary spherical means for functions locally in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>L</mi><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>L</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>𝜖</mi></mrow></msup></math> for any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi>\u0000<mo>></mo> <mn>0</mn></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.2109
Andrea Marchese, Andrea Merlo
{"title":"Characterization of rectifiability via Lusin-type approximation","authors":"Andrea Marchese, Andrea Merlo","doi":"10.2140/apde.2024.17.2109","DOIUrl":"https://doi.org/10.2140/apde.2024.17.2109","url":null,"abstract":"<p>We prove that a Radon measure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> can be written as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi>\u0000<mo>=</mo><msubsup><mrow><mi> ∑</mi><mo> <!--FUNCTION APPLICATION--></mo>\u0000<!--nolimits--></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub></math>, where each of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub></math> is an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi></math>-dimensional rectifiable measure if and only if, for every Lipschitz function <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi>\u0000<mo>:</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup>\u0000<mo>→</mo>\u0000<mi>ℝ</mi></math> and every <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜀</mi>\u0000<mo>></mo> <mn>0</mn></math>, there exists a function <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math> of class <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math> such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">{</mo><mi>x</mi>\u0000<mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup>\u0000<mo>:</mo>\u0000<mi>g</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>≠</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo><mo stretchy=\"false\">)</mo>\u0000<mo><</mo>\u0000<mi>𝜀</mi></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.1887
Alex Cohen, Zhenhao Li, Wilhelm Schlag
{"title":"Uniqueness of excited states to −Δu + u−u3 = 0 in three dimensions","authors":"Alex Cohen, Zhenhao Li, Wilhelm Schlag","doi":"10.2140/apde.2024.17.1887","DOIUrl":"https://doi.org/10.2140/apde.2024.17.1887","url":null,"abstract":"<p>We prove the uniqueness of several excited states to the ODE <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ÿ</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo>\u0000<mo>+</mo>\u0000<mo stretchy=\"false\">(</mo><mn>2</mn><mo>∕</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mi>ẏ</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo>\u0000<mo>+</mo>\u0000<mi>f</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo>\u0000<mo>=</mo> <mn>0</mn></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo>\u0000<mo>=</mo>\u0000<mi>b</mi></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ẏ</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo>\u0000<mo>=</mo> <mn>0</mn></math>, for the model nonlinearity <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\u0000<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\u0000<mo>−</mo>\u0000<mi>y</mi></math>. The <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>-th excited state is a solution with exactly <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> zeros and which tends to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn></math> as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi>\u0000<mo>→</mo><mi>∞</mi></math>. These represent all smooth radial nonzero solutions to the PDE <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><mi>u</mi>\u0000<mo>+</mo>\u0000<mi>f</mi><mo stretchy=\"false\">(</mo><mi>u</mi><mo stretchy=\"false\">)</mo>\u0000<mo>=</mo> <mn>0</mn></math> in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math>. We interpret the ODE as a damped oscillator governed by a double-well potential, and the result is proved via rigorous numerical analysis of the energy and variation of the solutions. More specifically, the problem of uniqueness can be formulated entirely in terms of inequalities on the solutions and their variation, and these inequalities can be verified numerically. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.2077
David Borthwick, Yiran Wang
{"title":"Existence of resonances for Schrödinger operators on hyperbolic space","authors":"David Borthwick, Yiran Wang","doi":"10.2140/apde.2024.17.2077","DOIUrl":"https://doi.org/10.2140/apde.2024.17.2077","url":null,"abstract":"<p>We prove existence results and lower bounds for the resonances of Schrödinger operators associated to smooth, compactly support potentials on hyperbolic space. The results are derived from a combination of heat and wave trace expansions and asymptotics of the scattering phase. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.2161
Alexey Cheskidov, Xiaoyutao Luo
{"title":"Extreme temporal intermittency in the linear Sobolev transport: Almost smooth nonunique solutions","authors":"Alexey Cheskidov, Xiaoyutao Luo","doi":"10.2140/apde.2024.17.2161","DOIUrl":"https://doi.org/10.2140/apde.2024.17.2161","url":null,"abstract":"<p>We revisit the notion of temporal intermittency to obtain sharp nonuniqueness results for linear transport equations. We construct divergence-free vector fields with sharp Sobolev regularity <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup></math> for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\u0000<mo><</mo>\u0000<mi>∞</mi></math> in space dimensions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\u0000<mo>≥</mo> <mn>2</mn></math> whose transport equations admit nonunique weak solutions belonging to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msubsup><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math> for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\u0000<mo><</mo>\u0000<mi>∞</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\u0000<mo>∈</mo>\u0000<mi>ℕ</mi></math>. In particular, our result shows that the time-integrability assumption in the uniqueness of the DiPerna–Lions theory is essential. The same result also holds for transport-diffusion equations with diffusion operators of arbitrarily large order in any dimensions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\u0000<mo>≥</mo> <mn>2</mn></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.2123
Philip Isett
{"title":"On the endpoint regularity in Onsager’s conjecture","authors":"Philip Isett","doi":"10.2140/apde.2024.17.2123","DOIUrl":"https://doi.org/10.2140/apde.2024.17.2123","url":null,"abstract":"<p>Onsager’s conjecture states that the conservation of energy may fail for three-dimensional incompressible Euler flows with Hölder regularity below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn></mrow>\u0000<mrow><mn>3</mn></mrow></mfrac></math>. This conjecture was recently solved by the author, yet the endpoint case remains an interesting open question with further connections to turbulence theory. In this work, we construct energy nonconserving solutions to the three-dimensional incompressible Euler equations with space-time Hölder regularity converging to the critical exponent at small spatial scales and containing the entire range of exponents <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo> <mfrac><mrow><mn>1</mn></mrow>\u0000<mrow><mn>3</mn></mrow></mfrac><mo stretchy=\"false\">)</mo></math>. </p><p> Our construction improves the author’s previous result towards the endpoint case. To obtain this improvement, we introduce a new method for optimizing the regularity that can be achieved by a convex integration scheme. A crucial point is to avoid loss of powers in frequency in the estimates of the iteration. This goal is achieved using localization techniques of Isett and Oh (<span>Arch.</span><span> Ration.</span><span> Mech.</span><span> Anal. </span><span>221</span>:2 (2016), 725–804) to modify the convex integration scheme. </p><p> We also prove results on general solutions at the critical regularity that may not conserve energy. These include a theorem on intermittency stating roughly that energy dissipating solutions cannot have absolute structure functions satisfying the Kolmogorov–Obukhov scaling for any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\u0000<mo>></mo> <mn>3</mn></math> if their singular supports have space-time Lebesgue measure zero. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.1871
Jingzhou Sun
{"title":"Projective embedding of stably degenerating sequences of hyperbolic Riemann surfaces","authors":"Jingzhou Sun","doi":"10.2140/apde.2024.17.1871","DOIUrl":"https://doi.org/10.2140/apde.2024.17.1871","url":null,"abstract":"<p>Given a sequence of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi>\u0000<mo>≥</mo> <mn>2</mn></math> curves converging to a punctured Riemann surface with complete metric of constant Gaussian curvature <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\u0000<mo>−</mo> <mn>1</mn></math>, we prove that the Kodaira embedding using an orthonormal basis of the Bergman space of sections of a pluricanonical bundle also converges to the embedding of the limit space together with extra complex projective lines. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis & PDEPub Date : 2024-07-19DOI: 10.2140/apde.2024.17.1907
Laurent Charles
{"title":"On the spectrum of nondegenerate magnetic Laplacians","authors":"Laurent Charles","doi":"10.2140/apde.2024.17.1907","DOIUrl":"https://doi.org/10.2140/apde.2024.17.1907","url":null,"abstract":"<p>We consider a compact Riemannian manifold with a Hermitian line bundle whose curvature is nondegenerate. Under a general condition, the Laplacian acting on high tensor powers of the bundle exhibits gaps and clusters of eigenvalues. We prove that for each cluster the number of eigenvalues that it contains is given by a Riemann–Roch number. We also give a pointwise description of the Schwartz kernel of the spectral projectors onto the eigenstates of each cluster, similar to the Bergman kernel asymptotics of positive line bundles. Another result is that gaps and clusters also appear in local Weyl laws. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}