{"title":"三维激发态对-Δu + u-u3 = 0的唯一性","authors":"Alex Cohen, Zhenhao Li, Wilhelm Schlag","doi":"10.2140/apde.2024.17.1887","DOIUrl":null,"url":null,"abstract":"<p>We prove the uniqueness of several excited states to the ODE <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ÿ</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo>\n<mo>+</mo>\n<mo stretchy=\"false\">(</mo><mn>2</mn><mo>∕</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mi>ẏ</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo>\n<mo>+</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>y</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>b</mi></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ẏ</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math>, for the model nonlinearity <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\n<mo>−</mo>\n<mi>y</mi></math>. The <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>-th excited state is a solution with exactly <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> zeros and which tends to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn></math> as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi>\n<mo>→</mo><mi>∞</mi></math>. These represent all smooth radial nonzero solutions to the PDE <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><mi>u</mi>\n<mo>+</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><mi>u</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math> in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math>. We interpret the ODE as a damped oscillator governed by a double-well potential, and the result is proved via rigorous numerical analysis of the energy and variation of the solutions. More specifically, the problem of uniqueness can be formulated entirely in terms of inequalities on the solutions and their variation, and these inequalities can be verified numerically. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"81 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of excited states to −Δu + u−u3 = 0 in three dimensions\",\"authors\":\"Alex Cohen, Zhenhao Li, Wilhelm Schlag\",\"doi\":\"10.2140/apde.2024.17.1887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the uniqueness of several excited states to the ODE <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ÿ</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>+</mo>\\n<mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>∕</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mi>ẏ</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>+</mo>\\n<mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>y</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <mn>0</mn></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>y</mi><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo>\\n<mi>b</mi></math>, and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ẏ</mi><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <mn>0</mn></math>, for the model nonlinearity <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\\n<mo>−</mo>\\n<mi>y</mi></math>. The <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>-th excited state is a solution with exactly <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> zeros and which tends to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>0</mn></math> as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>t</mi>\\n<mo>→</mo><mi>∞</mi></math>. These represent all smooth radial nonzero solutions to the PDE <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><mi>u</mi>\\n<mo>+</mo>\\n<mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>u</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <mn>0</mn></math> in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math>. We interpret the ODE as a damped oscillator governed by a double-well potential, and the result is proved via rigorous numerical analysis of the energy and variation of the solutions. More specifically, the problem of uniqueness can be formulated entirely in terms of inequalities on the solutions and their variation, and these inequalities can be verified numerically. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1887\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1887","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uniqueness of excited states to −Δu + u−u3 = 0 in three dimensions
We prove the uniqueness of several excited states to the ODE , , and , for the model nonlinearity . The -th excited state is a solution with exactly zeros and which tends to as . These represent all smooth radial nonzero solutions to the PDE in . We interpret the ODE as a damped oscillator governed by a double-well potential, and the result is proved via rigorous numerical analysis of the energy and variation of the solutions. More specifically, the problem of uniqueness can be formulated entirely in terms of inequalities on the solutions and their variation, and these inequalities can be verified numerically.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.