Global well-posedness for a system of quasilinear wave equations on a product space

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cécile Huneau, Annalaura Stingo
{"title":"Global well-posedness for a system of quasilinear wave equations on a product space","authors":"Cécile Huneau, Annalaura Stingo","doi":"10.2140/apde.2024.17.2033","DOIUrl":null,"url":null,"abstract":"<p>We consider a system of quasilinear wave equations on the product space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>3</mn></mrow></msup>\n<mo>×</mo> <msup><mrow><mi mathvariant=\"double-struck\">𝕊</mi></mrow><mrow><mn>1</mn></mrow></msup> </math>, which we want to see as a toy model for the Einstein equations with additional compact dimensions. We show global existence of solutions for small and regular initial data with polynomial decay at infinity. The method combines energy estimates on hyperboloids inside the light cone and weighted energy estimates outside the light cone. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a system of quasilinear wave equations on the product space 1+3 × 𝕊1 , which we want to see as a toy model for the Einstein equations with additional compact dimensions. We show global existence of solutions for small and regular initial data with polynomial decay at infinity. The method combines energy estimates on hyperboloids inside the light cone and weighted energy estimates outside the light cone.

乘积空间上准线性波方程系统的全局好求解性
我们考虑的是乘积空间ℝ1+3× ᵔ1上的准线性波方程系统,我们希望将其视为具有额外紧凑维度的爱因斯坦方程的玩具模型。我们证明了对于较小且规则的初始数据,在无穷远处具有多项式衰减的解的全局存在性。该方法结合了对光锥内双曲线的能量估计和对光锥外的加权能量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信